Testimony of
Mark P. Mills, Senior Fellow, Manhattan Institute
Before
U.S. House Committee on Energy and Commerce
Subcommittee on Environment and Climate Change
On
“Back in Action: Restoring Federal Climate Leadership”
February 9, 2021

Good morning. Thank you for the opportunity to testify. I’m a Senior Fellow at the Manhattan Institute where I focus on science, technology, and energy issues. I am also a Faculty Fellow at the McCormick School of Engineering at Northwestern University where the focus is on future manufacturing technologies. And, for the record, I’m a strategic partner in a venture fund focused on software startups in energy.

Since the purpose of this hearing is to explore actions directed, in the main, at changing the energy supply system of the United States, permit me to highlight some realities.

As the Committee knows, 80% of the nation’s energy comes from hydrocarbons, and internal combustion engines account for 99% of all transportation passenger-miles.1 Meanwhile, wind and solar supply less than 4% of U.S. energy, and electric cars under 0.5% of road-miles.2 Given the scale of our economy, changing the status quo presents some daunting economic, environmental and geopolitical challenges.

First, the cost of complete grid restructuring would be far greater than popularly acknowledged. The Administration has proposed spending $2 trillion on climate programs across seven domains.3 But, for the electric grid alone, analyses show we’d need at least $5 to $6 trillion in wind/solar and battery systems to replace existing hydrocarbon generation.4

And, doing so by say 2035, would require a continuous construction program at least 600% bigger than any single peak year for utility construction that has occurred in the U.S., China or Germany over the past half-century.5 True, this would create jobs. However, since the final product remains unchanged, but uses more labor and capital, in economic terms this reverses a long-run goal of increasing productivity. And, as you know, productivity is the single most important feature of an economy that expands overall wealth for citizens.

1 “U.S. Passenger-Miles,” Bureau of Transportation Statistics.
3 “The Biden Plan.”
None of the above includes the need for an enormous expansion of the grid if a significant share of cars shift from oil to electricity. In the end, it bears noting the arithmetical outcome: that new grid would reduce global carbon dioxide emissions by less than 6%.

Grid restructuring and accelerating electric cars also means exporting jobs and offshoring environmental consequences. Some 90% of solar panels are imported, as are 80% of the key components for wind turbines. Asian companies dominate global battery production and account for 80% of all planned factories. Even if we expand domestic manufacturing, our import dependencies remain for critical energy minerals.

On average, per unit of energy delivered, the quantity of materials extracted from the earth and processed for “clean tech” is 500% to 1,000% greater than with hydrocarbons. As it stands today, Chinese firms dominate the production and processing of many critical rare earth elements, and nearly all the growth in mining is expected offshore, increasingly in fragile, biodiverse wilderness areas. More mining can be done in an environmentally responsible way, but so far there’s little evidence of support for opening new mines in America.

These are some of the kinds of challenges that should be part of the calculus as the Congress seeks ways to meet society’s energy needs.

EXPANDED TESTIMONY

The Material Cost of “Clean Tech”

The materials extracted from the earth to fabricate everything, including wind turbines, solar panels, and batteries (to store grid electricity or power electric vehicles) are typically out of sight, located at remote quarries, mine sites, and mineral-processing facilities around the world. Those locations matter in terms of geopolitics and supply-chain risks, as well as in general environmental terms, including accounting for carbon dioxide emissions. The scale of the material demands for “clean tech” machines is, for many, surprising.

For example, replacing the energy output from a single 100-MW natural gas-fired turbine, itself about the size of a residential house (producing enough electricity for 75,000 homes), requires at least 20 wind

turbines, each one about the size of the Washington Monument, occupying some 10 square miles of land. Building those wind machines consumes enormous quantities of conventional materials, such as concrete, steel, and fiberglass, along with less common materials, including “rare earth” elements such as dysprosium. A World Bank study noted what every mining engineer knows: “[T]echnologies assumed to populate the clean energy shift … are in fact significantly more material intensive in their composition than current traditional fossil-fuel-based energy supply systems.”

As it happens, all forms of renewable energy require roughly comparable quantities of materials in order to build machines that capture nature’s flows: sun, wind, and water. Wind farms come close to matching hydro dams in material consumption, and solar farms outstrip both. In all three cases, the largest share of the tonnage is found in the use of conventional materials like concrete, steel, and glass. Compared with a natural gas power plant, all three require at least 10 times as many total tons mined, moved, and converted into machines to deliver the same quantity of energy.

For example, building a single 100-MW wind farm—never mind thousands of them—requires some 30,000 tons of iron ore and 50,000 tons of concrete, as well as 900 tons of nonrecyclable plastics for the huge blades. With solar hardware, the tonnage in cement, steel, and glass is 150% greater than for wind, for the same energy output.

If episodic sources of energy (wind and solar) are to be used to supply power 24/7, even greater quantities of materials will be required. One needs to build additional machines, roughly two to three times as many, in order to produce and store energy when the sun and wind are available, for use at times when they are not. Then there are the additional materials required to build electricity storage. For context, a utility-scale storage system sufficient for the above-noted 100-MW wind farm would entail using at least 10,000 tons of Tesla-class batteries.

The handling and processing of such large quantities of materials entails its own energy costs as well as associated environmental implications. But first, the critical supply-chain issue is not so much the increase in the use of common (though energy-intensive) materials such as concrete and glass. The core challenges for the supply chain and the environment reside with the need for radical increases in the quantities of a wide variety of minerals.

The world currently mines about 7,000 tons per year of neodymium for example, one of numerous key elements used in fabricating the electrical systems for wind turbines. Current clean-energy scenarios imagined by the World Bank (and many others) will require a 1,000%–4,000% increase in neodymium supply in the coming several decades. While there are differing underlying assumptions used in various analyses of mineral requirements for green energy, all reach the same range of conclusions. For example, the mining of indium, used in fabricating electricity-generating solar semiconductors, will need to increase as much as 8,000%. The mining of cobalt for batteries will need to grow 300%–800%.

12 Landon Stevens, “The Footprint of Energy: Land Use of U.S. Electricity Production,” Strata, June 2017. This calculation understates land usage; at least double the number of wind turbines, plus storage, would be needed to replace the continuous availability of electricity from conventional generation.

17 La Porta et al., The Growing Role of Minerals and Metals.

production, used for electric cars (never mind the grid), will need to rise more than 2,000%. The Institute for Sustainable Futures at the University of Technology Sydney last year analyzed 14 metals essential to building clean-tech machines, concluding that the supply of elements such as nickel, dysprosium, and tellurium will need to increase 200%–600%.

The implications of such remarkable increases in the demand for energy minerals have not been entirely ignored, at least in Europe. A Dutch government–sponsored study concluded that the Netherlands’ green ambitions alone would consume a major share of global minerals. “Exponential growth in [global] renewable energy production capacity,” the study noted, “is not possible with present-day technologies and annual metal production.”

Behind the Scenes: Ore Grades and “Overburden”

The scale of these material demands understates the total tonnage of the earth that is necessarily moved and processed, all of which requires the use of energy-consuming machines and processes. Forecasts of future mineral demands focus on counting the quantity of refined, pure elements needed—but not the overall amount of the earth that must be dug up, moved, and processed.

For every ton of a purified element, a far greater tonnage of ore must be physically moved and processed. That is a reality for all elements, expressed by geologists as an ore grade: the percentage of the rock that contains the sought-after element. While ore grades vary widely, copper ores typically contain only about a half-percent, by weight, of the element itself: thus, roughly 200 tons of ore are dug up, moved, crushed, and processed to get to one ton of copper. For rare earths, some 20 to 160 tons of ore are mined per ton of element. For cobalt, roughly 1,500 tons of ore are mined to get to one ton of the element.

In the calculus of economic and environmental costs, one must also include this so-called overburden—the tons of rocks and dirt that are first removed to get access to often deeply buried mineral-bearing ore. While overburden ratios also vary widely, it is common to see three to seven tons of earth moved to get access to one ton of ore.

For a snapshot of what all this points to regarding the total materials footprint of the green energy path, consider the supply chain for a single electric car battery, which in final form weighs about 1,000 pounds. Providing the refined minerals needed to fabricate a single EV battery requires the mining, moving, and processing of more than 500,000 pounds of materials somewhere on the planet. That’s 20 times more than the 25,000 pounds of petroleum that an internal combustion engine uses over the life of a car.

The core issue here for a green energy future is not whether there are enough elements in the earth’s crust to meet demand; there are. Most elements are quite abundant, and nearly all are far more common than gold. Obtaining sufficient quantities of nature’s elements, at a price that markets can tolerate, is

25 There is, over the life span of a conventional car, 50,000 pounds of cumulative gasoline consumption (counting upstream coproduction of associated liquids).
fundamentally determined by technology and access to the land where they are buried. The latter is mainly about government permissions.

However, as the World Bank cautions, the materials implications of a “clean tech” future creates “a new suite of challenges for the sustainable development of minerals and resources.”26 Some minerals are difficult to obtain for technical reasons inherent in the geophysics. It is in the underlying physics of extraction and physical chemistry of refinement that we find the realities of unsustainable green energy at the scales that many propose.

Sources of Minerals: Conflicts and Dependencies

The critical, and even vital, roles of specific minerals have long been a concern of some analysts and various government commissions over the years. One can trace a straight line from an electric car to Inner Mongolia’s massive Bayan Obo mines (for rare earths), and to mines in the Democratic Republic of Congo (for cobalt in batteries). Both of those regions represent the world’s largest supply of rare earths and cobalt, respectively. 27

Politically troubled Chile has the world’s greatest lithium resources, although stable Australia is the world’s biggest supplier. Elsewhere in the battery supply chain, Chinese cobalt refiners have quietly gained control over more than 90% of the battery industry’s cobalt refining, without which the raw cobalt ore is useless. 28

The Institute for Sustainable Futures in Sydney, Australia, cautions that a global gold rush for green minerals to meet ambitious plans could take miners into “some remote wilderness areas [that] have maintained high biodiversity because they haven’t yet been disturbed.”29 And then there are the widely reportedly cases of abuse and child labor in mines in the Congo, where 70% of the world’s raw cobalt originates. 30

Late in 2019, Apple, Google, Tesla, Dell, and Microsoft found themselves accused in a lawsuit filed in a U.S. federal court of exploiting child labor in the Congo.31 Similar connections can be made to labor abuses associated with copper, nickel, or niobium mines around the world.32 While there is nothing new about such real or alleged abuses, what is new is the rapid growth and enormous prospective demand for tech’s minerals and green energy minerals. The Dodd-Frank Act of 2010 includes reporting requirements on trade in “conflict minerals.” A recent Government Accountability Office (GAO) report notes that more than a thousand companies filed conflict minerals disclosures with the Securities and Exchange Commission, per Dodd-Frank. 33

26 La Porta et al., The Growing Role of Minerals and Metals.
Automakers building electric cars have joined smartphone makers in such pledges for “ethical sourcing” of minerals. Car batteries are, however, create the biggest demand for “conflict” cobalt. Companies can make pledges; but unfortunately, the facts suggest that there is little correlation between such pledges and the frequency of (claimed) abuses in foreign mines. In addition to moral questions about exporting the environmental and labor challenges of mineral extraction, the strategic challenges of supply chains are a top security concern as well.

Strategic Dependencies: Old Security Worries Reanimated

Supply-chain worries about critical minerals during World War I prompted Congress to establish, in 1922, the Army and Navy Munitions Board to plan for supply procurement, listing 42 strategic and critical materials. This was followed by the Strategic Materials Act of 1939. By World War II, some 15 critical materials had been stockpiled, six of which were released and used during that war. The 1939 act has been revised twice, in 1965 and 1979, and amended in 1993 to specify that the purpose of that act was for national defense only.

As recently as 1990, the U.S. was the world’s number-one producer of minerals. It is in seventh place today. More relevant, as the United States Geological Survey (USGS) notes, are strategic dependencies on specific critical minerals. In 1954, the U.S. was 100% dependent on imports for eight minerals. Today, the U.S. is 100% reliant on imports for 17 minerals and depends on imports for over 50% of 28 widely used minerals. China is a significant source for half of those 28 minerals.

The Department of Defense and the Department of Energy (DOE) have issued reports on critical mineral dependencies many times over the decades. In 2010, DOE issued the Critical Materials Strategy; in 2013, DOE formed the Critical Materials Institute, the same year the National Science Foundation launched a critical-materials initiative. In 2018, USGS identified a list of 35 minerals as critical to security of the nation.

But decades of warnings about rising mineral dependencies have yielded no significant changes in domestic policies. The reality is that depending on imports for small quantities of minerals used in vital military technologies can be reasonably addressed by building domestic stockpiles, a solution as ancient as mining itself. However, today’s massive domestic and global push for clean-tech energy cannot be addressed with small stockpiles. The options are to accept more strategic dependency, or to increase domestic mining. And both those options have unaccounted for implications for total fuel-cycle carbon dioxide emissions.

36 Hodal, “**Most Renewable Energy Companies**.”

40 DOI and USGS, “**Mineral Commodity Summaries 2020**.”

