ELECTRIC VEHICLES DEPEND ON MINING

Mineral demands are expected to grow as much as 1,000% by 2050.1 Much of this demand will come from automakers, which plan to spend $300 billion globally to produce new electric vehicles (EVs) over the next decade.2 Our made-in-America EV future can also be a mined-in-America future, with U.S. mining ready to meet much of this need while providing high-paying jobs and maintaining strong environmental protections.

EVs require 2x the number of metals compared to internal combustion engines.

The EV revolution is driving global demand for battery metals, which may increase 500% or more by 2050.

EVs use 183 lbs of copper vs. 18-49 for gas powered vehicles.2

EVs contain more than a mile of copper wiring.3

EVs use 183 lbs of copper vs. 18-49 for gas powered vehicles.2

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.

EVs as a share of global car sales4

EVs require 2x the number of metals compared to internal combustion engines.