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Abstract—This paper studies the influence of demographics on
the performance of face recognition algorithms. The recognition
accuracies of six different face recognition algorithms (three com-
mercial, two nontrainable, and one trainable) are computed on a
large scale gallery that is partitioned so that each partition con-
sists entirely of specific demographic cohorts. Eight total cohorts
are isolated based on gender (male and female), race/ethnicity
(Black, White, and Hispanic), and age group (18–30, 30–50, and
50–70 years old). Experimental results demonstrate that both
commercial and the nontrainable algorithms consistently have
lower matching accuracies on the same cohorts (females, Blacks,
and age group 18–30) than the remaining cohorts within their
demographic. Additional experiments investigate the impact of
the demographic distribution in the training set on the perfor-
mance of a trainable face recognition algorithm. We show that
the matching accuracy for race/ethnicity and age cohorts can be
improved by training exclusively on that specific cohort. Oper-
ationally, this leads to a scenario, called dynamic face matcher
selection, where multiple face recognition algorithms (each trained
on different demographic cohorts) are available for a biometric
system operator to select based on the demographic information
extracted from a probe image. This procedure should lead to
improved face recognition accuracy in many intelligence and law
enforcement face recognition scenarios. Finally, we show that
an alternative to dynamic face matcher selection is to train face
recognition algorithms on datasets that are evenly distributed
across demographics, as this approach offers consistently high
accuracy across all cohorts.

Index Terms—Age, demographics, dynamic face matcher selec-
tion, face recognition, gender, race/ethnicity, training.

I. INTRODUCTION

S OURCES of errors in automated face recognition algo-
rithms are generally attributed to the well studied vari-

ations in pose, illumination, and expression [1], collectively
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known as PIE. Other factors such as image quality (e.g., res-
olution, compression, blur), time lapse (facial aging), and oc-
clusion also contribute to face recognition errors [2]. Previous
studies have also shown within a specific demographic group
(e.g., race/ethnicity, gender, age) that certain cohorts are more
susceptible to errors in the face matching process [3], [4]. How-
ever, there has yet to be a comprehensive study that investigates
whether or not we can train face recognition algorithms to ex-
ploit knowledge regarding the demographic cohort of a probe
subject.
This study presents a large scale analysis of face recogni-

tion performance on three different demographics (see Fig. 1):
(i) race/ethnicity, (ii) gender, and (iii) age. For each of these
demographics, we study the performance of six face recogni-
tion algorithms belonging to three different types of systems:
(i) three commercial off the shelf (COTS) face recognition sys-
tems (FRS), (ii) face recognition algorithms that do not utilize
training data, and (iii) a trainable face recognition algorithm.
While the COTS FRS algorithms leverage training data, we are
not able to retrain these algorithms; instead they are black box
systems that output a measure of similarity between a pair of
face images. The nontrainable algorithms use common feature
representations to characterize face images, and similarities are
measured within these feature spaces. The trainable face recog-
nition algorithm used in this study also outputs a measure of
similarity between a pair of face images. However, different ver-
sions of this algorithm can be generated by training it with dif-
ferent sets of face images, where the sets have been separated
based on demographics. Both the trainable algorithms, and (pre-
sumably) the COTS FRS, initially use some variant of the non-
trainable representations.
The study of COTS FRS performance on each of the

demographics considered is intended to augment previous
experiments [3], [4] on whether these algorithms, as used in
government and other applications, exhibit biases. Such biases
would cause the performance of commercial algorithms to
vary across demographic cohorts. In evaluating three different
COTS FRS, we confirmed that not only do these algorithms
perform worse on certain demographic cohorts, they consis-
tently perform worse on the same cohorts (females, Blacks, and
younger subjects).
Even though biases of COTS FRS on various cohorts were

observed in this study, these algorithms are black boxes that
offer little insight into to why such errors manifest on specific
demographic cohorts. To understand this, we also study the
performance of noncommercial trainable and nontrainable
face recognition algorithms, and whether statistical learning
methods can leverage this phenomenon.

1556-6013/$31.00 © 2012 IEEE
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Fig. 1. Examples of the different demographics studied. (a)–(c) Age demographic. (d), (e) Gender demographic. (f)–(h) Race/ethnicity demographic. Within each
demographic, the following cohorts were isolated: (a) ages 18–30, (b) ages 30–50, (c) ages 50–70, (d) female gender, (e) male gender, (f) Black race, (g) White
race, and (h) Hispanic ethnicity. The first row shows the “mean face” for each cohort. A “mean face” consists of the average pixel values computed from all the
aligned face images in a cohort. The second and third rows show different sample images within the cohorts.

By studying nontrainable face recognition algorithms, we
gain an understanding of whether or not the errors are inherent
to the specific demographics. This is because nontrainable
algorithms operate by measuring the (dis)similarity of face
images based on a specific feature representation that, ideally,
encodes the structure and shape of the face. This similarity is
measured independent of any knowledge of how face images
vary for the same subject and between different subjects. Thus,
cases in which the nontrainable algorithms have the same
relative performance within a demographic group as the COTS
FRS indicates that the errors are likely due to one of the cohorts
being inherently more difficult to recognize.
Relative differences in performance between the nontrainable

algorithms and the COTS FRS indicate that the lower perfor-
mance of COTS FRS on a particular cohort may be due to im-
balanced training of the COTS algorithm. We explore this hy-
pothesis by training the Spectrally Sampled Structural Subspace
Features (4SF) face recognition algorithm [5] (i.e., the train-
able face recognition algorithm used in this study) on image
sets that consist exclusively of a particular cohort (e.g., Whites
only). The learned subspaces in 4SF are applied to test sets from
different cohorts to understand how unbalanced training with
respect to a particular demographic impacts face recognition
accuracy.
The 4SF trained subspaces also help answer the following

question: to what extent can statistical learning improve accu-
racy on a demographic cohort? For example, it will be shown
that females are more difficult to recognize than males. We will
investigate how much training on only females, for example,
can improve face recognition accuracy when matching females.
The remainder of this paper is organized as follows. In

Section II we discuss previous studies on demographic intro-
duced biases in face recognition algorithms and the design
of face recognition algorithms. Section III discusses the data
corpus that was utilized in this study. Section IV identifies

the different face recognition algorithms that were used in
this study (commercial systems, trainable and nontrainable
algorithms). Section V describes the matching experiments
conducted on each demographic. Section VI provides analysis
of the results in each experiment and summarizes the contribu-
tions of this paper.

II. PRIOR STUDIES AND RELATED WORK

Over the last twenty years the National Institute of Standards
and Technology (NIST) has run a series of evaluations to quan-
tify the performance of automated face recognition algorithms.
Under certain imaging constraints these tests have measured
a relative improvement of over two orders of magnitude in
performance over the last two decades [4]. Despite these
improvements, there are still many factors known to degrade
face recognition performance (e.g., PIE, image quality, aging).
In order to maximize the potential benefit of face recognition
in forensics and law enforcement applications, we need to
improve the ability of face recognition to sort through facial
images more accurately and in a manner that will allow us to
perform more specialized or targeted searches. Facial searches
leveraging demographics represents one such avenue for per-
formance improvement.
While there is no standard approach to automated face

recognition, most face recognition algorithms follow a similar
pipeline [6]: face detection, alignment, appearance normal-
ization, feature representation (e.g., local binary patterns [7],
Gabor features [8]), feature extraction [9], [10]), and matching
[11]. Feature extraction generally relies on an offline training
stage that utilizes exemplar data to learn improved feature
combinations. For example, variants of the linear discriminant
analysis (LDA) algorithm [9], [10] use training data to compute
between-class and within-class scatter matrices. Subspace
projections are then computed to maximize the separability of
subjects based on these scatter matrices.
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This study examines the impact of training on face recogni-
tion performance. Without leveraging training data, face recog-
nition algorithms are not able to discern between noisy facial
features and facial features which offer consistent cues to a sub-
ject’s identity. As such, automated face recognition algorithms
are ultimately based on statistical models of the variance be-
tween individual faces. These algorithms seek to minimize the
measured distance between facial images of the same subject,
while maximizing the distance between the subject’s images and
those of the rest of the population. However, the feature com-
binations discovered are functions of the data used to train the
recognition system. If the training set is not representative of
the population a face recognition algorithm will be operating
on, then the performance of the resulting system may deteri-
orate. For example, the most distinguishing features for Black
subjects may differ from White subjects. As such, if a system
was predominantly trained on White faces, and later operated
on Black faces, the learned representation may discard infor-
mation useful for discerning Black faces.
The observation that the performance of face recognition al-

gorithms could suffer if the training data is not representative of
the population is not new. One of the earliest studies reporting
this phenomenon is not in the automated face recognition
literature, but instead in the context of human face recogni-
tion. Coined the “other-race effect”, humans have consistently
demonstrated a decreased ability to recognize subjects from
races different from their own [12], [13]. While there is no
generally agreed upon explanation for this phenomenon, many
researchers believe the decreased performance on other races
is explained by the “contact” hypothesis, which postulates that
the lower performance on other races is due to a decreased
exposure [14]. While the validity of the contact hypothesis has
been disputed [15], the presence of the “other-race effect” has
not.
From the perspective of automated face recognition, the

2002 NIST Face Recognition Vendor Test (FRVT) is believed
to be the first study that showed that face recognition algorithms
have different recognition accuracies depending on a subject’s
demographic cohort [3]. Among other findings, this study
demonstrated, for commercial face recognition algorithms on
a dataset containing roughly 120,000 images, that (i) female
subjects were more difficult to recognize than male subjects,
and (ii) younger subjects were generally more difficult to
recognize than older subjects.
More recently, Grother et al. measured the performance of

seven commercial face recognition algorithms and three aca-
demic face recognition algorithms in the 2010 NIST Multi-Bio-
metric Evaluation [4]. The results of their experiments also con-
cluded that females were more difficult to recognize than males.
This study also measured the recognition accuracy of different
races and ages.
Other studies have also investigated the impact of the distri-

bution of a training set on recognition accuracy. Furl et al. [16]
and Phillips et al. [17] conducted studies to investigate the im-
pact of cross training and matching on White and Asian races.
Similar training biases were investigated by Klare and Jain [18],
showing that aging-invariant face recognition algorithms suffer
from decreased performance in nonaging scenarios.

The study in [17] was motivated by a rather surprising result
in the 2006 NIST Face Recognition Vendor Test (FRVT) [19]. In
this test, the various commercial and academic face recognition
algorithms tested exhibited a common characteristic: algorithms
which originated in East Asia performed better on Asian sub-
jects than did algorithms developed in the Western hemisphere.
The reverse was true for White subjects: algorithms developed
in the western hemisphere performed better. O’Toole et al. sug-
gested that this discrepancy was due to the different racial distri-
bution in the training sets for the Western and Asian algorithms.
The impact of these training sets on face recognition algo-

rithms cannot be overemphasized; face recognition algorithms
do not generally rely upon explicit physiological models of the
human face for determining match or nonmatch between two
faces. Instead, the measure of similarity between face images is
based on statistical learning, generally in the feature extraction
stage [10], [20]–[23] or during the matching stage [11].
In this work, we expand on previous studies to better

demonstrate and understand the impact of a training set on the
performance of face recognition algorithms. While previous
studies [16], [17] only isolated the race variate, and only con-
sidered two races (i.e., Asian and White), this study explores
both the inherent biases and training biases across gender, race
(three different races/ethnicities) and age. To our knowledge,
no studies have investigated the impact of gender or subject
age for training face recognition algorithms.

III. FACE DATABASE

This study was enabled by a collection of over one million
mug shot face images from the Pinellas County Sheriff’s Office
(PCSO)1 (examples of these images can be found in Fig. 1). Ac-
companying these images are complete subject demographics.
The demographics provide the race/ethnicity, gender, and age of
the subject in each image, as well as a subject ID number.
The images in this dataset have been acquired since the

year 1994 (when PCSO began capturing digital mug shots) to
the present. Images were acquired across different cameras at
several stations (one camera at intake, two cameras at booking,
and two cameras at release). For the images acquired between
1994 to 2001 the specifications of the capture cameras are
not known. Starting in 2001, all images were acquired using
Sony D100 cameras. The cameras are mounted vertically to
capture at 480 600 resolution, and images adhere to the
ANSI/NIST-ITL 1-2000 face image standard [24]. Despite
being captured in a controlled setting with subject cooperation,
some face images exhibit minor pose and expression variations.
The images in Fig. 1 are commensurate with the pose and ex-
pression variations in this dataset. Illumination was controlled
using three point lighting and the background was set to 18%
gray.
Given this large corpus of face images, we were able to

use the metadata provided to control the three demographics
studied: race/ethnicity, gender, and age. For gender, we parti-
tioned image sets into cohorts of (i) male only, and (ii) female

1The mug shot data used in this study was acquired in the public domain
through Florida’s “Sunshine” laws. Subjects shown in this manuscript may or
may not have been convicted of a criminal charge, and thus should be presumed
innocent of any wrongdoing.
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TABLE I
NUMBER OF SUBJECTS USED FOR TRAINING AND TESTING FOR

EACH DEMOGRAPHIC CATEGORY. TWO IMAGES PER SUBJECT
WERE USED. TRAINING AND TEST SETS WERE DISJOINT.
A TOTAL OF 102,942 FACE IMAGES WERE USED

IN THIS STUDY

only. For age, we partitioned the sets into three cohorts:
(i) young (18 to 30 years old), (ii) middle-age (30 to 50 years
old), and (iii) old (50 to 70 years old). There were very few
individuals in this database with age less than 18 and older
than 70. For race/ethnicity,2 we partitioned the sets into cohorts
of (i) White, (ii) Black, and (iii) Hispanic.3 A summary of
these cohorts and the number of subjects available for each
cohort can be found in Table I. Asian, Indian, and Unknown
race/ethnicities were not considered because an insufficient
number of samples were available.
For each of the eight cohorts (i.e., male, female, young,

middle-aged, old, White, Black, and Hispanic), we created
independent training and test sets of face images. Each set con-
tains a maximum of 8,000 subjects, with two images (one probe
and one gallery) for each subject. Table I lists the number of
subjects included for each set. Cohorts far less than 8,000 sub-
jects (i.e., Hispanic and older) reflect a lack of data available
to us. Cases with cohorts containing only slightly fewer than
8,000 subjects are the result of removing a few images that
could not be successfully enrolled in the COTS FRS.
For each demographic that was controlled (e.g. gender),

the other demographics were uncontrolled so that they have
roughly the same distribution (following the findings in [25]).
For example, the percentage of black subjects and white
subjects is roughly the same for both the female and male
controlled datasets. Thus, the relative recognition between
cohorts within a controlled demographic is not a function of
some other demographic being distributed differently. From a
random sample of 150,000 subjects in the PCSO dataset, we
have the following distribution for each cohort: 78.6% male,
21.4% female, 67.7% White, 28.0% Black, 3.7% Hispanic,
44.8% young, 47.5% middle-aged, and 7.7% old.
The dataset of mug shot images did not contain a large

enough number of Asian subjects to measure that particular
race/ethnicity cohort. However, studies by Furl et al. [16] and
O’Toole et al. [17] investigated the impact of the Whites and

2Racial identifiers (i.e. White, Black, and Hispanic) follow the FBI’s National
Crime Information Center code manual.
3Hispanic is not technically a race, but instead an ethnic category.

East Asians. As previously discussed, these studies concluded
that algorithms developed in the Western Hemisphere did better
on White subjects and Asian algorithms did better on Asian
subjects.

IV. FACE RECOGNITION ALGORITHMS

In this section we will discuss each of the six face recog-
nition algorithms used in this study. We have organized these
algorithms into commercial algorithms (Section IV-A), non-
trainable algorithms (Section IV-B), and trainable algorithms
(Section IV-C).

A. Commercial Face Recognition Algorithms

Three commercial face recognition algorithms were evalu-
ated in this study: (i) Cognitec’s FaceVACS v8.2, (ii) PittPatt
v5.2.2, and (iii) Neurotechnology’s MegaMatcher v3.1. The re-
sults in this study obfuscate the names of the three commercial
matchers.
These commercial algorithms are three of the ten algorithms

evaluated in the NIST sponsored Multi-Biometrics Evaluation
(MBE) [4]. As such, these algorithms are representative of the
state of the art performance in face recognition technology.

B. Non-Trainable Face Recognition Algorithms

Two nontrainable face recognition algorithms were used in
this study: (i) local binary patterns (LBP), and (ii) Gabor fea-
tures. Both of these methods operate by representing the face
with Level 2 facial features (LBP and Gabor), where Level 2
facial features are features that encode the structure and shape
of the face, and are critical to face recognition algorithms [26].
These nontrainable algorithms perform an initial geometric

normalization step (also referred to as alignment) by using the
automatically detected eye coordinates (eyes were detected
using FaceVACS SDK) to scale, rotate, and crop a face image.
After this step, the face image has a height and width of
128 pixels. Both algorithms are custom implementations by the
authors.
1) Local Binary Patterns: A seminal method in face recogni-

tion is the use of local binary patterns [7] (LBP) to represent the
face [27]. Local Binary Patterns represent small patches across
the face with histograms of binary patterns that encode the struc-
ture and texture of the face.
Local binary patterns describe each pixel using a -bit binary

number. Each bit is determined by sampling pixel values at
uniformly spaced locations along a circle of radius , centered
at the pixel being described. For each sampling location, the
corresponding bit receives the value 1 if it is greater than or
equal to the center pixel, and 0 otherwise.
A special case of LBP, called the uniform LBP [7], is gener-

ally used in face recognition. Uniform LBP assigns any nonuni-
form binary number to the same value, where uniformity is de-
fined by whether more than transitions between the values 0
and 1 occur in the binary number. For and , the uni-
form LBP has 58 uniform binary numbers, and the 59th value is
reserved for the remaining nonuniform binary
numbers. Thus, each pixel will take on a value ranging from 1 to
59. Two different radii are used ( and ), resulting in
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Fig. 2. Overview of the Spectrally Sampled Structural Subspace Features (4SF) algorithm. This custom algorithm is representative of state-of-the-art methods
in face recognition. By changing the demographic distribution of the training sets input into the 4SF algorithm, we are able to analyze the impact the training
distribution has on various demographic cohorts.

two different local binary pattern representations that are subse-
quently concatenated together (called Multiscale Local Binary
Patterns, or MLBP).
In the context of face recognition, LBP values are first com-

puted at each pixel in the (normalized) face image as previously
described. The image is tessellated into patches with a height
and width of 12 pixels. For each patch , a histogram of the
LBP values is computed (where ). This fea-
ture vector is then normalized to the feature vector by

. Finally, we concatenate the vectors into a
single vector of dimensionality .
In our implementation, the illumination filter proposed by Tan

and Triggs [28] is used prior to computing the LBP codes in
order to suppress nonuniform illumination variations. This filter
resulted in improved recognition performance.
2) Gabor Features: Gabor features are one of the facial fea-

tures [26] to have been used with wide success in representing
facial images [8], [20], [29]. One reason Gabor features are pop-
ular for representing both facial and natural images is their sim-
ilarity with human neurological receptor fields [30], [31].
A Gabor image representation is computed by convolving a

set of Gabor filters with an image (in this case, a face image).
The Gabor filters are defined as

(1)

(2)

(3)

where sets the filter scale (or frequency), is the filter ori-
entation along the major axis, controls the filter sharpness
along the major axis, and controls the sharpness along the
minor axis. Typically, combinations across the following values
for the scale and orientation are used:
and . This creates a set (or bank)
of filters with different scales and orientations. Given the bank
of Gabor filters, the input image is convolved with each filter,
which results in a Gabor image for each filter. The combina-
tion of these scale and orientation values results in 40 different
Gabor filters, which in turn results in 40 Gabor images (for
example).
In this paper, the recognition experiments using a Gabor

image representation involve: (i) performing illumination
correction using the method proposed by Tan and Triggs [28],
(ii) computing the phase response of the Gabor images with

, and , (iii) tessellating the

Gabor image(s) into patches of size 12 12, (iv) quantizing
the phase response (which ranges from 0 to ) into 24 values
and computing the histogram within each patch, and (v) con-
catenating the histogram vectors into a single feature vector.
Given two (aligned) face images, the distance between their
corresponding Gabor feature vectors is used to measure the
dissimilarity between the two face images.

C. Trainable Face Recognition Algorithm

The trainable algorithm used in this study is the Spectrally
Sampled Structural Subspace Features algorithm [5], which is
abbreviated as 4SF. This algorithm (which was developed in
house) uses multiple discriminative subspaces to perform face
recognition. After geometric normalization of a face image
using the automatically detected eye coordinates (eyes were
detected using FaceVACS SDK), illumination correction is
performed using the illumination correction filter presented by
Tan and Triggs [28]. Face images are then represented using
histograms of local binary patterns at densely sampled face
patches [27] (to this point, 4SF is the same as the nontrainable
LBP algorithm described in Section IV-B1). For each face
patch, principal component analysis (PCA) is performed so
that 98.0% of the variance is retained. Given a training set of
subjects, multiple stages of weighted random sampling is per-
formed, where the spectral densities (i.e., the eigenvalues) from
each face patch are used for weighting. The randomly sampled
subspaces are based on Ho’s original method [32], however the
proposed approach is unique in that the sampling is weighted
based on the spectral densities. For each stage of random
sampling, LDA [10] is performed on the randomly sampled
components. The LDA subspaces are learned using subjects
randomly sampled from the training set (i.e., bagging [33]).
Finally, distance-based recognition is performed by projecting
the LBP representation of face images into the per-patch PCA
subspaces, and then into each of the learned LDA subspaces.
The sum of the Euclidean distance in each subspace is the
dissimilarity between two face images. The 4SF algorithm is
summarized in Fig. 2.
As shown in the experiments conducted in this study, the 4SF

algorithm performs on par with several commercial face recog-
nition algorithms. Because 4SF initially uses the same approach
as the nontrainable LBP matcher, the improvement in recog-
nition accuracies (in this study) between the nontrainable LBP
matcher and the 4SF algorithm clearly demonstrates the ability
of 4SF to leverage training data. Thus, a high matching accu-
racy and the ability to leverage training data make 4SF an ideal
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Fig. 3. Performance of the six face recognition systems on datasets separated by cohorts within the gender demographic. (a) COTS-A, (b) COTS-B, (c) COTS-C,
(d) Local binary patterns (nontrainable), (e) Gabor (nontrainable), (f) 4SF trained on equal number of samples from each gender, (g) 4SF algorithm (trainable) on
the Females cohort, and (h) 4SF algorithm (trainable) on the Males cohort.

face recognition algorithm to study the effects of training data
on face recognition performance.
While 4SF is intended to be representative of learning-based

methods in face recognition, it could be the case that other
learning-based algorithms (such as [20]–[23]) exhibit different
amounts of sensitivity to the demographic distribution of the
training data. However, unlike most pattern classification tasks
which train on samples from the same classes (i.e. subjects) that
the algorithms are being tested on, the recognition scenarios
in this study (and face recognition in general) operate in a
transfer learning scenario. Thus, because we are training on
different classes/subjects than those being tested, the relative
performance of 4SF’s training-based results in this study are

generally considered to be a function of the data and not the
4SF algorithm itself.

V. EXPERIMENTAL RESULTS

For each demographic (gender, race/ethnicity, and age), three
separate matching experiments are conducted. The results of
these experiments are presented per demographic. Fig. 3 delin-
eates the results for all the experiments on the gender demo-
graphic. Fig. 4 delineates the results for all experiments on the
race/ethnicity demographic. Finally, Fig. 5 delineates the results
for all experiments on the age demographic. The true accept rate
at a fixed false accept rate of 0.1% for all the plots in Figs. 3 to 5
are summarized in Table II.
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Fig. 4. Performance of the six face recognition systems on datasets separated by cohorts within the race demographic. (a) COTS-A, (b) COTS-B, (c) COTS-C,
(d) Local binary patterns (nontrainable), (e) Gabor (nontrainable), (f) 4SF trained on equal number of samples from each race, (g) 4SF algorithm (trainable) on the
Black cohort, (h) 4SF algorithm (trainable) on the White cohort, and (i) 4SF algorithm (trainable) on the Hispanic cohort.

The first experiment conducted on each demographic
measures the relative performance within the demographic
cohort for each COTS FRS. That is, for a particular com-
mercial matcher (e.g., COTS-A), we compare it’s matching
accuracy on each cohort within that demographic. For ex-
ample, on the gender demographic, this experiment will
measure the difference in recognition accuracy for commercial
matchers on males versus females. The results from this set
of experiments can be found in Figs. 3(a)–(c) for the gender
demographic, Figs. 4(a)–(c) for the race/ethnicity demographic,
and Figs. 5(a)–(c) for the age demographic.

The second experiment conducted on each demographic co-
hort measures the relative performance within the cohort for
nontrainable face recognition algorithms. Because the nontrain-
able algorithms do not leverage statistical variability in faces,
they are not susceptible to training biases. Instead, they reflect
the inherent (or a priori) difficulty in recognizing cohorts of sub-
jects within a specific demographic group. The results from this
set of experiments can be found in Figs. 3(d), (e) for the gender
demographic, Figs. 4(d), (e) for the race/ethnicity demographic,
and Figs. 5(d), (e) for the age demographic.
The final experiment investigates the influence of the training

set on recognition performance. Within each demographic co-
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Fig. 5. Performance of the six face recognition systems on datasets separated by cohorts within the age demographic. (a) COTS-A, (b) COTS-B, (c) COTS-C,
(d) Local binary patterns (nontrainable), (e) Gabor (nontrainable), (f) 4SF trained on equal number of samples from each age, (g) 4SF algorithm (trainable) on the
Ages 18–30 cohort, (h) 4SF algorithm (trainable) on the Ages 30–50 cohort, (i) 4SF algorithm (trainable) on the Ages 50–70 cohort.

hort, we train several versions of the 4SF algorithm (one for
each cohort). These differently trained versions of the 4SF algo-
rithm are then applied to separate testing sets from each cohort
within the particular demographic. This enables us to under-
stand within the gender demographic (for example), how much
training exclusively on females (i) improves performance on
females, and (ii) decreases performance on males. In addition
to training 4SF exclusively on each cohort, we also use a ver-
sion of 4SF trained on an equal representation of specific de-
mographic cohorts (referred to as “Trained on All”). For ex-
ample, in the gender demographic, this would mean that for
“All”, 4SF was trained on 4,000 male subjects and 4,000 female

subjects. The results from this set of experiments can be found
in Figs. 3(f)–(h) for the gender demographic, Figs. 4(f)–(i) for
the race/ethnicity demographic, and Figs. 5(f)–(i) for the age
demographic.

VI. ANALYSIS

In this section we provide an analysis of the findings of the
experiments described in Section V.

A. Gender

Each of the three commercial face recognition algorithms per-
formed significantly worse on the female cohort than the male
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TABLE II
LISTED ARE THE TRUE ACCEPT RATES (%) AT A FIXED FALSE ACCEPT RATE

OF 0.1% FOR EACH MATCHER AND DEMOGRAPHIC DATASET

cohort (see Figs. 3(a)–(c)). Additionally, both nontrainable al-
gorithms (LBP and Gabor) performed significantly worse on fe-
males (see Figs. 3(d), (e)).
The agreement in relative accuracies of the COTS FRS and

the nontrainable LBP method on the gender demographic sug-
gests that the female cohort is more difficult to recognize than
the male cohort. That is, if the results in the COTS algorithms
were due to imbalanced training sets (i.e., training on more
males than females), then the LBP matcher should have yielded
similar matching accuracies on males and females. Instead, the
nontrained LBP and Gabor matchers performed worse on the
female cohort. When training on males and females equally
(Fig. 3(h)), the 4SF algorithm also did significantly worse on
the female cohort. Together, these results strongly suggest that
the female cohort is inherently more difficult to recognize.
The results of the 4SF algorithm on the female cohort

(Fig. 3(f)) offer additional evidence about the nature of the
discrepancy. The performance of training on only females is
not higher than the performance of training on a mix of males
and females (labeled “All”).
Different factors may explain why females are more difficult

to recognize than males. One explanation may be the use of
cosmetics by females (i.e., makeup), which results in a higher

Fig. 6. Match score distributions for the male and female genders using the 4SF
system trained with an equal number of male and female subjects. The increased
distances (dissimilarities) for the true match comparisons in the female cohort
suggest increased within-class variance in the female cohort. All histograms are
aligned on the same horizontal axis.

within-class variance for females than males. This hypothesis
is supported by the match score distributions for males and fe-
males (see Fig. 6). A greater difference in the true match dis-
tributions is noticed when compared to the false match distri-
butions. The increased dissimilarities between images of the
same female subjects demonstrate intraclass variability. Again,
a cause of this may be due to the application of cosmetics.
One could postulate that the reason for female face images to

be more difficult to recognize than male faces is that the size of
the female face is generally smaller than the male face. How-
ever, the mean and standard deviation of interpulilary distances
(IPD) for the female face images in this study was 108.2 19.0.
The mean and standard deviation of IPD’s for all the male face
images in this study was 110.3 17.0. Thus, it is quite unlikely
that such a large discrepancy in recognition accuracy between
males and females would be due to this 2 pixel difference in
size.
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B. Race

When examining the race/ethnicity cohort, all three commer-
cial face recognition algorithms achieved the lowest matching
accuracy on the Black cohort (see Figs. 4(a)–(c)). The two non-
trained algorithms had similar results (Figs. 4(d), (e)).
When matching against only Black subjects (Fig. 4(f)),

4SF has a higher accuracy when trained exclusively on Black
subjects (about a 5% improvement over the system trained on
Whites and Hispanics only). Similarly, when evaluating 4SF
on only White subjects (Fig. 4(g)), the system trained on only
the White cohort had the highest accuracy. However, when
comparing the 4SF algorithm trained equally on all race/eth-
nicity cohorts (Fig. 4(i)), we see that the performance on the
Black cohort is still lower than on the White cohort. Thus, even
with balanced training, the Black cohort still is more difficult
to recognize.
The key finding in the training results shown in Figs. 4(f)–(i)

is the ability to improve recognition accuracy by training exclu-
sively on subjects of the same race/ethnicity. Compared to bal-
anced training (i.e., training on “All”), the performance of 4SF
when trained on the same race/ethnicity as it is recognizing is
higher. Thus, by merely changing the distribution of the training
set, we can improve the recognition rate by nearly 2% on the
Black cohort and 1.5% on the White cohort (see Table II).
The inability to effectively train on the Hispanic cohort is

likely due to the insufficient number of training samples avail-
able for this cohort. However, the biogeographic ancestry of the
Hispanic ethnicity is generally attributed to a three-way admix-
ture of Native American, European, andWest Black populations
[34]. Even with an increased number of training samples, we
believe this mixture of races would limit the ability to improve
recognition accuracy through race/ethnicity specific training.

C. Age Demographic

All three commercial algorithms had the lowest matching
accuracy on subjects grouped in the ages 18 to 30 (see
Figs. 5(a)–(c)). The COTS-A matcher performed nearly the
same on the 30 to 50 year old cohort as the 50 to 70 year old
cohort. However, COTS-B had slightly higher accuracy on
30 to 50 age group than 50 to 70 age group, while COTS-C
performed slightly better on 50 to 70 than 30 to 50 age groups.
The nontrainable algorithms (Figs. 5(d), (e)) also performed

the worst on the 18 to 30 age cohort.
When evaluating 4SF on only the 18 to 30 year old cohort

(Fig. 5(f)) and the 30 to 50 year old cohort (Fig. 5(g)), the highest
performance was achieved when training on the same cohort.
Table II helps elaborate on the exact accuracies. Similar to race,
we were able to improve recognition accuracy for the age cohort
by merely changing the distribution of the training set.
When comparing the 4SF system that is trained with equal

number of subjects from all age cohorts, the performance on the
18 to 30 year old cohort is the lowest. This is consistent with the
accuracies of the commercial face recognition algorithms.
The less effective results from training on the 50 to 70 year

old cohort is likely due to a small number of training subjects.
This is consistent with the training results on the Hispanic co-
hort, which also had a small number of training subjects.

D. Impact of Training

The demographic distribution of the training set generally
had a clear impact on the performance of different demographic
groups. Particularly in the case of race/ethnicity, we see that
training on a set of subjects from the same demographic co-
hort as being matched offers an increase in the True Accept
Rate (TAR). This finding on the 4SF algorithm is particularly
important because in most operational scenarios, particularly
those dealing with forensics and law enforcement, the use of
face recognition is not being done in a fully automated, “lights
out” mode. Instead, an operator is usually interacting with a face
recognition system, performing a one-to-one verification task,
or exploring the gallery to group together candidates for further
exploitation. Provided such results generalize to other learning
algorithms (as we postulate), each of these scenarios can benefit
from the use of demographic-enhanced matching algorithms, as
described below.
1) Scenario 1—1:N Search: In many large face recognition

database searches, the objective is to have the true match candi-
dates ranked high enough to be found by the analyst performing
the candidate adjudication. COTS algorithms used for such
searches should be trained on datasets where the demographic
distributions are evenly distributed across the different cohorts.
In cases where a successful match is not found, the analyst will
often be able to categorize the demographics of the probe image
based on age, gender, and/or race/ethnicity. In such a situation,
if the analyst has the option to select a different matching
algorithm that has been trained for that specific demographic
group, then improved matching results should be expected.
An schematic of this is shown in Fig. 8. The individual in the
probe image in Fig. 8 could be searched using an algorithm
trained on male, Whites, and aged 18 to 30. If a true match is
not found using that algorithm, then a more generic algorithm
might be used as a follow up to further search the gallery.
Note that this scenario does not require that the gallery images
be preclassified based on specific demographic information.
Instead, the algorithm should simply generate higher match
scores for subjects that share the characteristics of that demo-
graphic cohort. We call this method of face search dynamic face
matcher selection. In cases where the demographic of the probe
subject is unclear (e.g., a mixed race/ethnicity subject), the
matcher trained on all cohorts equally can be used. Examples
of improved retrieval instances through applying this technique
can be found in Fig. 7.
2) Scenario 2—1:1 Verification: It is often the case that in-

vestigators will identify a possible match to a known subject
and will request an analyst to perform a 1:1 verification of the
match. This also happens as a result of a 1:N search, once a po-
tential match to a probe is identified. In either case, the analyst
must reach a determination of match or no-match. In fully auto-
mated systems, this decision is based on a numerical similarity
threshold. In some environments, the analyst is prevented from
seeing the similarity score out of concern that his judgment will
be biased. But in others, the analyst is permitted to incorporate
the match score into his analysis. In either case, it is anticipated
that an algorithm trained on a specific demographic group will
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Fig. 7. Shown are examples where dynamic face matcher selection improved the retrieval accuracy. The last two columns show the less frequent cases where
such a technique reduced the retrieval accuracy. Retrieval ranks are out of (a) 8,000 gallery subjects for the White cohort, and (b) 7,992 for the Black cohort.
Leveraging demographic information (such as race/ethnicity in this example) allows a face recognition system to perform the matching using statistical models
that are tuned to the differences within the specific cohort.

return higher match scores for true matches than one that was
more generic. As a result, the analyst is more likely to get a hit
and the 1:1 matching results process will be improved.
3) Scenario 3—Verification at Border Crossings: The

results presented here provide support for further testing of
additional demographic groups, potentially including specific
country or geographic-region of origin. Assuming such de-
mographics proved effective at improving match scores, then
use of dynamic face matcher selection could be extended to
immigration or border checks on entering subjects to verify
that their passport or other documents accurately reflects their
true demographic.
4) Scenario 4—Face Clustering: Another analyst-driven

application involves the exploitation of large sets of uncon-
trolled face imagery. Images encountered in intelligence or
investigative applications often include large sets of videos or
arbitrary photographs taken with no intention of enrolling them
in a face recognition environment. Such image sets offer a great
potential for development of intelligence leads by locating
multiple pictures of specific individuals and giving analysts

an opportunity to link subjects who may be found within the
same photographs. Clustering methods are now being used
on these datasets to group faces that appear to represent the
same subject. Implementations of such clustering methods
today usually rely upon a single algorithm to perform the
grouping and an analyst must perform the quality control step
to determine if a particular cluster contains only a single indi-
vidual. By combining multiple demographic-based algorithms
into a sequential analysis, it may be possible to improve the
clustering of large sets of face images and thereby reduce the
time required for the analyst to perform the adjudication of
individual clusters.

VII. CONCLUSIONS

This paper examined face recognition performance on dif-
ferent demographic cohorts on a large operational database
of 102,942 face images. Three demographics were analyzed:
gender (male and female), race/ethnicity (White, Black, and
Hispanic), and age (18 to 30 years old, 30 to 50 years old, and
50 to 70 years old).
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Fig. 8. Dynamic face matcher selection. The findings in this study suggest that
many face recognition scenarios may benefit from multiple face recognition
systems that are trained exclusively on different demographic cohorts. Demo-
graphic information extracted from a probe image may be used to select the
appropriate matcher, and improve face recognition accuracy.

For each demographic cohort, the performances of three com-
mercial face recognition algorithms were measured. The perfor-
mances of all three commercial algorithms were consistent in
that they all exhibited lower recognition accuracies on the fol-
lowing cohorts: females, Blacks, and younger subjects (18 to
30 years old).
Additional experiments were conducted to measure the per-

formance of nontrainable face recognition algorithms (local bi-
nary pattern-based and Gabor-based), and a trainable subspace
method (the Spectrally Sampled Structural Subspace Features
(4SF) algorithm). The results of these experiments offered ad-
ditional evidence to form hypotheses about the observed dis-
crepancies between certain demographic cohorts.
Some of the key findings in this study are:
• The female, Black, and younger cohorts are more difficult
to recognize for all matchers used in this study (commer-
cial, nontrainable, and trainable).

• Training face recognition systems on datasets well dis-
tributed across all demographics is critical to reduce face
matcher vulnerabilities on specific demographic cohorts.

• Face recognition performance on race/ethnicity and age
cohorts generally improves when training exclusively on
that same cohort.

• In forensic scenarios, the above findings suggest the use
of dynamic face matcher selection, where multiple face
recognition systems, trained on different demographic co-
horts, are available as a suite of systems for operators to
select based on the demographic information of a given
query image (see Fig. 8).

Finally, as with any empirical study, additional ways to ex-
ploit the findings of this research are likely to be found. Of
particular interest is the observation that women appear to be
more difficult to identify through facial recognition than men.
If we can determine the cause of this difference, it may be pos-
sible to use that information to improve the overall matching
performance.
The experiments conducted in this paper should have a sig-

nificant impact on the design of face recognition algorithms.
Similar to the large body of research on algorithms that im-
prove face recognition performance in the presence of other
variates known to compromise recognition accuracy (e.g., pose,

illumination, and aging), the results in this study should moti-
vate the design of algorithms that specifically target different
demographic cohorts within the race/ethnicity, gender and age
demographics. By focusing on improving the recognition ac-
curacy on such confounding cohorts (i.e., females, Blacks, and
younger subjects), researchers should be able to further reduce
the error rates of state of the art face recognition algorithms and
reduce the vulnerabilities of such systems used in operational
environments.
Future studies will seek to confirm the training-based results

in this work on other learning algorithms (such as [20]–[23]),
as well as study cohorts from multiple demographics (such as
White males, Black females, etc.).
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