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Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II

Southwest25

Low water levels in Lake MeadKey Message 1

Water Resources
Water for people and nature in the Southwest has declined during droughts, due in 
part to human-caused climate change. Intensifying droughts and occasional large 
floods, combined with critical water demands from a growing population, deteriorating 
infrastructure, and groundwater depletion, suggest the need for flexible water 
management techniques that address changing risks over time, balancing declining 
supplies with greater demands.

Key Message 2

Ecosystems and Ecosystem Services
The integrity of Southwest forests and other ecosystems and their ability to provide 
natural habitat, clean water, and economic livelihoods have declined as a result of 
recent droughts and wildfire due in part to human-caused climate change. Greenhouse 
gas emissions reductions, fire management, and other actions can help reduce future 
vulnerabilities of ecosystems and human well-being.

Key Message 3

The Coast
Many coastal resources in the Southwest have been affected by sea level rise, ocean 
warming, and reduced ocean oxygen—all impacts of human-caused climate change—and 
ocean acidification resulting from human emissions of carbon dioxide. Homes and 
other coastal infrastructure, marine flora and fauna, and people who depend on coastal 
resources face increased risks under continued climate change.
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Key Message 4

Indigenous Peoples 
Traditional foods, natural resource-based livelihoods, cultural resources, and spiritual 
well-being of Indigenous peoples in the Southwest are increasingly affected by drought, 
wildfire, and changing ocean conditions. Because future changes would further 
disrupt the ecosystems on which Indigenous peoples depend, tribes are implementing 
adaptation measures and emissions reduction actions.

Key Message 5

Energy
The ability of hydropower and fossil fuel electricity generation to meet growing energy 
use in the Southwest is decreasing as a result of drought and rising temperatures. 
Many renewable energy sources offer increased electricity reliability, lower water 
intensity of energy generation, reduced greenhouse gas emissions, and new economic 
opportunities. 

Key Message 6

Food
Food production in the Southwest is vulnerable to water shortages. Increased 
drought, heat waves, and reduction of winter chill hours can harm crops and livestock; 
exacerbate competition for water among agriculture, energy generation, and municipal 
uses; and increase future food insecurity.

Key Message 7

Human Health
Heat-associated deaths and illnesses, vulnerabilities to chronic disease, and other 
health risks to people in the Southwest result from increases in extreme heat, poor air 
quality, and conditions that foster pathogen growth and spread. Improving public health 
systems, community infrastructure, and personal health can reduce serious health risks 
under future climate change.
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Executive Summary

The Southwest 
region encompasses 
diverse ecosystems, 
cultures, and econ-
omies, reflecting 
a broad range of 
climate conditions, 

including the hottest and driest climate in the 
United States. Water for people and nature 
in the Southwest region has declined during 
droughts, due in part to human-caused climate 
change. Higher temperatures intensified the 
recent severe drought in California and are 
amplifying drought in the Colorado River Basin. 
Since 2000, Lake Mead on the Colorado River 
has fallen 130 feet (40 m) and lost 60% of its 
volume, a result of the ongoing Colorado River 
Basin drought and continued water withdraw-
als by cities and agriculture.

The reduction of water volume in both Lake 
Powell and Lake Mead increases the risk of 
water shortages across much of the Southwest. 
Local water utilities, the governments of seven 
U.S. states, and the federal governments of 
the United States and Mexico have voluntarily 
developed and implemented solutions to 
minimize the possibility of water shortages 
for cities, farms, and ecosystems. In response 
to the recent California drought, the state 
implemented a water conservation plan in 
2014 that set allocations for water utilities and 
major users and banned wasteful practices. As 
a result, the people of the state reduced water 
use 25% from 2014 to 2017.

Exposure to hotter temperatures and heat 
waves already leads to heat-associated deaths 
in Arizona and California. Mortality risk during 
a heat wave is amplified on days with high 
levels of ground-level ozone or particulate 
air pollution. Given the proportion of the 
U.S. population in the Southwest region, a 

disproportionate number of West Nile virus, 
plague, hantavirus pulmonary syndrome, and 
Valley fever cases occur in the region. 

Analyses estimated that the area burned by 
wildfire across the western United States 
from 1984 to 2015 was twice what would have 
burned had climate change not occurred. 
Wildfires around Los Angeles from 1990 to 
2009 caused $3.1 billion in damages (unadjust-
ed for inflation). Tree death in mid-elevation 
conifer forests doubled from 1955 to 2007 due, 
in part, to climate change. Allowing naturally 
ignited fires to burn in wilderness areas and 
preemptively setting low-severity prescribed 
burns in areas of unnatural fuel accumulations 
can reduce the risk of high-severity fires under 
climate change. Reducing greenhouse gas 
emissions globally can also reduce ecological 
vulnerabilities.

At the Golden Gate Bridge in San Francisco, sea 
level rose 9 inches (22 cm) between 1854 and 
2016. Climate change caused most of this rise 
by melting of land ice and thermal expansion of 
ocean water. Local governments on the Cali-
fornia coast are using projections of sea level 
rise to develop plans to reduce future risks. 
Ocean water acidity off the coast of California 
increased 25% to 40% (decreases of 0.10 to 
0.15 pH units) from the preindustrial era (circa 
1750) to 2014 due to increasing concentrations 
of atmospheric carbon dioxide from human 
activities. The marine heat wave along the 
Pacific Coast from 2014 to 2016 occurred due 
to a combination of natural factors and climate 
change. The event led to the mass stranding of 
sick and starving birds and sea lions, and shifts 
of red crabs and tuna into the region. The 
ecosystem disruptions contributed to closures 
of commercially important fisheries. 
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Climate Change Has Increased Wildfire

The cumulative forest area burned by wildfires has greatly increased between 1984 and 2015, with analyses estimating that the 
area burned by wildfire across the western United States over that period was twice what would have burned had climate change 
not occurred. From Figure 25.4 (Source: adapted from Abatzoglou and Williams 2016). 

Agricultural irrigation accounts for approx-
imately three-quarters of water use in the 
Southwest region, which grows half of the 
fruits, vegetables, and nuts and most of the 
wine grapes, strawberries, and lettuce for the 
United States. Increasing heat stress during 
specific phases of the plant life cycle can 
increase crop failures.

Drought and increasing heat intensify the arid 
conditions of reservations where the United 
States restricted some tribal nations in the 
Southwest region to the driest portions of 
their traditional homelands. In response to 
climate change, Indigenous peoples in the 
region are developing new adaptation and 
mitigation actions.

The severe drought in California, intensified 
by climate change, reduced hydroelectric 
generation two-thirds from 2011 to 2015. 
The efficiency of all water-cooled electric 
power plants that burn fuel depends on the 
temperature of the external cooling water, so 
climate change could reduce energy efficiency 
up to 15% across the Southwest by 2050. Solar, 
wind, and other renewable energy sources, 
except biofuels, emit less carbon and require 
less water than fossil fuel energy. Economic 
conditions and technological innovations have 
lowered renewable energy costs and increased 
renewable energy generation in the Southwest. 
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Severe Drought Reduces Water Supplies in the Southwest

Since 2000, drought that was intensified by long-term trends of higher temperatures due to climate change has reduced the flow in 
the Colorado River (top left), which in turn has reduced the combined contents of Lakes Powell and Mead to the lowest level since 
both lakes were first filled (top right). In the Upper Colorado River Basin that feeds the reservoirs, temperatures have increased 
(bottom left), which increases plant water use and evaporation, reducing lake inflows and contents. Although annual precipitation 
(bottom right) has been variable without a long-term trend, there has been a recent decline in precipitation that exacerbates 
the drought.  Combined with  increased Lower Basin water consumption that began in the 1990s, these trends  explain the 
recently  reduced  reservoir contents.  Straight lines indicate trends for temperature, precipitation, and river flow. The trends 
for temperature and river flow are statistically significant. From Figure 25.3 (Sources: Colorado State University and CICS-
NC. Temperature and precipitation data from: PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, 
accessed 20 June 2018).

http://prism.oregonstate.edu/
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Background

The Southwest region encompasses diverse 
ecosystems, cultures, and economies, reflect-
ing a broad range of climate conditions, includ-
ing the hottest and driest climate in the United 
States. Arizona, California, Colorado, New 
Mexico, Nevada, and Utah occupy one-fifth of 
U.S. land area, extending across globally unique 
ecosystems from the Sonoran Desert to the 
Sierra Nevada to the Pacific Coast. The region 
is home to 60 million people, with 9 out of 10 
living in urban areas and the total population 
growing 30% faster than the national average.1 
The Nation depends on the region for more 
than half of its specialty crops such as fruits, 
nuts, and vegetables.2 The Southwest also 
drives the U.S. technology sector, with more 
than 80% of the country’s technology capital-
ization located in California.3

Ecosystems in the Southwest gradually trans-
form from deserts and grasslands in hotter and 
lower elevations in the south to forests and 
alpine meadows in cooler, higher elevations 
in the north. Natural and human-caused 
wildfire shapes the forests and shrublands that 
cover one-quarter and one-half of the region, 
respectively.4 To conserve habitat for plants 
and wildlife and supply clean water, timber, 
recreation, and other services for people, 
the U.S. Government manages national parks 
and other public lands covering half of the 
Southwest region.5 Climate change is altering 
ecosystems and their services through major 
vegetation shifts213 and increases in the area 
burned by wildfire.7

The California coast extends 3,400 miles 
(5,500 km),8 with 200,000 people living 3 feet 
(0.9 m) or less above sea level.9 The seaports 
of Long Beach and Oakland, several interna-
tional airports, many homes, and high-value 
infrastructure lie along the coast. In addition, 
much of the Sacramento–San Joaquin River 

Delta is near sea level. California has the most 
valuable ocean-based economy in the country, 
employing over half a million people and 
generating $20 billion in wages and $42 billion 
in economic production in 2014.10 Coastal 
wetlands buffer against storms, protect water 
quality, provide habitat for plants and wildlife, 
and supply nutrients to fisheries. Sea level 
rise, storm surges, ocean warming, and ocean 
acidification are altering the coastal shoreline 
and ecosystems.

Water resources can be scarce because of the 
arid conditions of much of the Southwest and 
the large water demands of agriculture, energy, 
and cities. Winter snowpack in the Rocky 
Mountains, Sierra Nevada, and other moun-
tain ranges provides a major portion of the 
surface water on which the region depends. 
Spring snowmelt flows into the Colorado, Rio 
Grande, Sacramento, and other major rivers, 
where dams capture the flow in reservoirs and 
canals and pipelines transport the water long 
distances. Complex water laws govern alloca-
tion among states, tribes, cities, ecosystems, 
energy generators, farms, and fisheries, and 
between the United States and Mexico. Water 
supplies change with year-to-year variability 
in precipitation and water use, but increased 
evapotranspiration due to higher temperatures 
reduces the effectiveness of precipitation 
in replenishing soil moisture and surface 
water.11,12,13,14

Agricultural irrigation accounts for nearly 
three-quarters of water use in the Southwest 
region,15,16 which grows half of the fruits, 
vegetables, and nuts2 and most of the wine 
grapes, strawberries, and lettuce17 for the 
United States. Consequently, drought and 
competing water demands in this region pose 
a major risk for agriculture and food security 
in the country. Through production and trade 
networks, impacts to regional crop production 
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can propagate nationally and internationally 
(see Ch. 16: International, KM 1)18

Parts of the Southwest reach the hottest 
temperatures on Earth, with the world 
record high of 134°F (57°C) recorded in Death 
Valley National Park, California19 and daily 
maximum temperatures across much of the 
region regularly exceeding 98°F (35°C) during 
summer.20 Greenhouse gases emitted from 
human activities have increased global average 
temperature since 188021 and caused detectable 
warming in the western United States since 
1901.22 The average annual temperature of the 
Southwest increased 1.6°F (0.9ºC) between 1901 
and 2016 (Figure 25.1).23 Moreover, the region 
recorded more warm nights and fewer cold 
nights between 1990 and 2016),24 including an 
increase of 4.1°F (2.3°C) for the coldest day of 
the year. Parts of the Southwest recorded the 
highest temperatures since 1895, in 2012,25 
2014,26 2015,27 2016,28 and 2017.29

Extreme heat episodes in much of the region 
disproportionately threaten the health and 
well-being of individuals and populations who 
are especially vulnerable (Ch. 14: Human Health, 
KM 1).30 Vulnerability arises from numerous 
factors individually or in combination, includ-
ing physical susceptibility (for example, young 
children and older adults), excessive exposure 
to heat (such as during heat waves), and socio-
economic factors that influence susceptibility 
and exposure (for example, hot and poorly 
ventilated homes or lack of access to public 
emergency cooling centers).31,32,33 Communica-
ble diseases, ground-level ozone air pollution, 
dust storms, and allergens can combine with 
temperature and precipitation extremes to 
generate multiple disease burdens (an indicator 
of the impact of a health problem). 

Episodes of extreme heat can affect transpor-
tation by reducing the ability of commercial 
airlines to gain sufficient lift for takeoff at 
major regional airports (Ch. 12: Transpor-
tation, KM 1).34

Temperature Has Increased Across the Southwest

Figure 25.1: Temperatures increased across almost all of the Southwest region from 1901 to 2016, with the greatest increases 
in southern California and western Colorado.23 This map shows the difference between 1986–2016 average temperature and 
1901–1960 average temperature.23 Source: adapted from Vose et al. 2017.23
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Native Americans are among the most at risk 
from climate change, often experiencing the 
worst effects because of higher exposure, 
higher sensitivity, and lower adaptive capacity 
for historical, socioeconomic, and ecological 
reasons. With one and a half million Native 
Americans,35 182 federally recognized tribes,36 
and many state-recognized and other non- 
federally recognized tribes, the Southwest has 
the largest population of Indigenous peoples in 
the country. Over the last five centuries, many 
Indigenous peoples in the Southwest have 
either been forcibly restricted to lands with 
limited water and resources37,38,39 or struggled 
to get their federally reserved water rights 
recognized by other users.40 Climate change 
exacerbates this historical legacy because the 
sovereign lands on which many Indigenous 
peoples live are becoming increasingly dry.

Further, climate change affects traditional 
plant and animal species, sacred places, 
traditional building materials, and other mate-
rial cultural heritage. The physical, mental, 
emotional, and spiritual health and overall 
well-being of Indigenous peoples rely on these 
vulnerable species and materials for their 
livelihoods, subsistence, cultural practices, 
ceremonies, and traditions.41,42,43,44

In parts of the region, hotter temperatures 
have already contributed to reductions of 
seasonal maximum snowpack and its water 
content over the past 30–65 years,45,46,47,48,49 
partially attributed to human-caused climate 
change.45,46,48,49 Increased temperatures most 
strongly affect snowpack water content, snow-
melt timing, and the fraction of precipitation 
falling as snow.48,50,51,52,53,54

The increase in heat and reduction of snow 
under climate change have amplified recent 
hydrological droughts (severe shortages of 
water) in California,14,55,56,57,58 the Colorado 
River Basin,12,13,59and the Rio Grande.45,60 Snow 

droughts can arise from a lack of precipitation 
(dry snow drought), temperatures that are 
too warm for snow (warm snow drought), or a 
combination of the two.48,51

Periods of low precipitation from natural 
variations in the climate system are the prima-
ry cause of major hydrological droughts in the 
Southwest region,61,62,63,64,65,66,67,68 with increasing 
temperatures from climate change amplifying 
recent hydrological droughts, particularly 
in California and the upper Colorado River 
Basin.12,13,14,56,57,59

Under the higher scenario (RCP8.5), climate 
models project an 8.6°F (4.8°C) increase in 
Southwest regional annual average tempera-
ture by 2100.23 Southern parts of the region 
could get up to 45 more days each year with 
maximum temperatures of 90°F (32°C) or high-
er.23 Projected hotter temperatures increase 
probabilities of decadal to multi-decadal 
megadroughts,61,62,69,70 which are persistent 
droughts lasting longer than a decade,69 even 
when precipitation increases. Under the higher 
scenario (RCP8.5), much of the mountain area 
in California with winters currently dominated 
by snow would begin to receive more precip-
itation as rain and then only rain by 2050.71 
Colder and higher areas in the intermountain 
West would also receive more rain in the fall 
and spring but continue to receive snow in the 
winter at the highest elevations.71

Increases in temperature would also contrib-
ute to aridification (a potentially permanent 
change to a drier environment) in much of 
the Southwest, through increased evapo-
transpiration,69,70,72,73 lower soil moisture,74 
reduced snow cover,71,75,76,77 earlier and slower 
snowmelt,75 and changes in the timing and 
efficiency of snowmelt and runoff.50,54,75,76,78,79 
Some research indicates increasing frequency 
of dry high-pressure weather systems asso-
ciated with changes in Northern Hemisphere 
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atmospheric circulation.80,81 These changes 
would tend to increase the duration and sever-
ity of droughts67,74 and generate an overall drier 
regional climate.69,70,72

Climate models project an increase in the 
frequency of heavy downpours, especially 
through atmospheric rivers,74,82 which are 
narrow bands of highly concentrated storms 
that move in from the Pacific Ocean. A series 
of strong atmospheric rivers caused extreme 
flooding in California in 2016 and 2017. Under 
the higher scenario (RCP8.5), models project 
increases in the frequency and intensity of 
atmospheric rivers.83,84,85,86 Climate models also 
project an increase in daily extreme summer 
precipitation in the Southwest region, based 
on projected increases in water vapor resulting 
from higher temperatures.20,87,88 Projections 
of summer total precipitation are uncertain, 
with average projected totals not differing 
substantially from what would be expected due 
to natural variations in climate.88

The Southwest generates one-eighth of U.S. 
energy, with hydropower, solar, wind, and 
other renewable sources supplying one-fifth 
of regional energy generation.89 By installing 
so much renewable energy, the Southwest has 
lowered its per capita and per dollar green-
house gas emissions below the U.S. average.90 
Climate change can, however, decrease 
hydropower and fossil fuel energy generation.91 
California has enacted mandatory greenhouse 
gas emissions reductions,92 and Arizona, 
California, Colorado, Nevada, and New Mexico 
have passed renewable portfolio standards to 
reduce fossil fuel dependence and greenhouse 
gas emissions.93

What Is New in the Fourth National Climate 
Assessment
This chapter builds on assessments of climate 
change in the Southwest region from the three 
previous U.S. National Climate Assessments.94,95,96 
Each assessment has consistently identified 
drought, water shortages, and loss of ecosystem 
integrity as major challenges that the Southwest 
confronts under climate change. This chapter 
further examines interconnections among water, 
ecosystems, the coast, food, and human health 
and adds new Key Messages concerning energy 
and Indigenous peoples.

Since the last assessment, published field 
research has provided even stronger detection 
of hydrological drought, tree death, wildfire 
increases, sea level rise, and warming, 
oxygen loss, and acidification of the ocean 
that have been statistically different from 
natural variation, with much of the attribution 
pointing to human-caused climate change. In 
addition, new research has provided published 
information on future vulnerabilities and risks 
from climate change, including floods, food 
insecurity, effects on the natural and cultural 
resources that sustain Indigenous peoples, 
illnesses due to the combination of heat with 
air pollution, harm to mental health, post- 
wildfire effects on ecosystems and infrastruc-
ture, and reductions of hydropower and fossil 
fuel electricity generation.

This chapter highlights many of the increasing 
number of actions that local governments and 
organizations have been taking in response 
to historical impacts of climate change and to 
reduce future risks (Figure 25.2). Some exam-
ples include voluntary water conservation and 
management in California and the Colorado 
River Basin, restoring cultural fire management 
in California, and rooftop solar policies in 
California, Colorado, and Nevada. Many state 
and local governments have issued climate 
change assessments and action plans.
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Key Message 1 
Water Resources

Water for people and nature in the South-
west has declined during droughts, due 
in part to human-caused climate change. 
Intensifying droughts and occasional 
large floods, combined with critical water 
demands from a growing population, dete-
riorating infrastructure, and groundwater 
depletion suggest the need for flexible 
water management techniques that ad-
dress changing risks over time, balancing 
declining supplies with greater demands.

Higher temperatures intensified the recent 
severe drought in California and are ampli-
fying drought in the Colorado River Basin. In 
California, the higher temperatures intensified 
the 2011–2016 drought,14,56,97,98,99 which had 
been initiated by years of low precipitation,57,58 
causing water shortages to ecosystems, cities, 
farms, and energy generators. In addition, 
above-freezing temperatures through the 
winter of 2014–2015 led to the lowest snowpack 
in California (referred to as a warm snow 
drought) on record.47,55,98,100 Through increased 
temperature, climate change may have 
accounted for one-tenth to one-fifth of the 
reduced soil moisture from 2012 to 2014 during 

Actions Responding to Climate Change Impacts and Vulnerabilities

Figure 25.2: These examples illustrate actions that people, communities, and governments are taking in response to past 
impacts of climate change and future vulnerabilities. Coastal protection: In response to sea level rise and storm surge in San 
Francisco Bay, federal, state, and local agencies, supported by voter-approved funds, are restoring coastal habitats and levees 
to protect cities from flooding. Crop water savings: The risk of reduced food production increases as climate change intensifies 
drought. In the Gila River Basin, local government agencies have lined 15 miles (24 km) of irrigation canals to reduce seepage 
from the canals, saving enough water to irrigate approximately 8,500 acres (3,400 hectares) of alfalfa and other crops each year. 
Cultural fire restoration: Reintroduction of cultural burning by the Yurok Tribe in northern California reduces wildfire risks and 
protects public and tribal trust resources. Desert soil restoration: In Utah, transplanting native and drought-resistant microbial 
communities improves soil fertility and guards against erosion. Health protection: To reduce heat-associated injury and deaths 
on Arizona trails, the City of Phoenix and Arizona tourism organizations developed a campaign “Take a Hike. Do it Right.” Signs 
at trailheads and on websites remind hikers to bring water, stay hydrated, and stay aware of environmental conditions. Ranching 
and habitat: The Malpai Borderlands Group in Arizona and New Mexico integrates native plant and wildlife conservation into 
private ranching. Rooftop solar: The state governments of California, Colorado, and Nevada have enacted policies that support 
rooftop solar on homes, which reduces greenhouse gas emissions, improves reliability of the electricity generation system, and 
creates local small businesses and new jobs. Water conservation: Drought in the Colorado River Basin has reduced the volume 
of water in both Lake Mead and Lake Powell by over half. The United States, Mexico, and state governments have mobilized 
users to conserve water, keeping the lake above a critical level. Wildfire fuel reduction: In response to severe wildfires, the City 
of Flagstaff, Arizona, enacted a bond to fund reduction of fire fuels in forests around the town. Source: National Park Service.
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the recent California drought.14 In the ongoing 
Colorado River Basin drought, high tem-
peratures due mainly to climate change have 
contributed to lower runoff12,59 and to 17%–50% 
of the record-setting streamflow reductions 
between 2000 and 2014 (Figure 25.3).13 In the 
Rio Grande, higher temperatures have been 
linked to declining runoff efficiency60 and 
reductions in snowpack.45

Increased temperatures, especially the earlier 
occurrence of spring warmth,101 have signifi-
cantly altered the water cycle in the Southwest 
region. These changes include decreases in 
snowpack and its water content,46,47,48,49,102 
earlier peak of snow-fed streamflow,103 and 
increases in the proportion of rain to snow.49,103 
These changes, attributed mainly to climate 
change,49,103 exacerbate hydrological drought. 

With continued greenhouse gas emissions, 
higher temperatures would cause more 
frequent and severe droughts in the South-
west.11,56,62,65,80 This would also lead to drier 
future conditions for the region.70,74 Higher 
temperatures sharply increase the risk of 
megadroughts—dry periods lasting 10 years or 
more.61,62,65 Under the higher scenario (RCP8.5), 
models project annual declines of river flow in 
southern basins (the Rio Grande and the lower 
Colorado River) and either no change or mod-
est increases in northern basins (northern Cali-
fornia and the upper Colorado River).78,104,105,106,107 
Snowpack supplies a major portion of water in 
the Southwest, but with continued emissions, 
models project substantial reductions in 
snowpack, less snow and more rain, shorter 
snowfall seasons, earlier runoff,55,71,78,79,108,109 and 
warmer late-season stream temperatures.110 
Fewer days with precipitation would lead 
to increased year-to-year variability.111,112,113 
Substantial increases in precipitation would 
be needed to overcome temperature-induced 
decreases in river flow.13 The combination 
of reduced river flows in California and the 

Colorado River Basin and increasing population 
in southern California, which imports most 
of its water, would increase the probability of 
future water shortages.114

In response to the recent California drought, 
the state government implemented a water 
conservation plan in 2014 that set allocations 
for water utilities and major users and banned 
wasteful practices such as watering during 
or after a rainfall, hosing off sidewalks, and 
irrigating ornamental turf on public street 
medians.115 As a result, the people of the state 
reduced water use 25% from 2014 to 2017, 
when abundant rains allowed the state to lift 
many restrictions while continuing to promote 
water conservation as a way of life.116

The Southern Nevada Water Authority used 
similar measures to reduce water use per 
person 38% from 2002 to 2016.117 Water utilities 
in the Colorado Front Range also used similar 
conservation practices to reduce water use 
more than 20% in the early 2000s.118 While 
many southwestern cities have reduced total 
and per-person water use since the 1990s 
despite growing populations,119 ongoing 
drought has increased competition for reliable 
water supplies in many locations. In parts 
of Colorado, Nevada, and Utah, population 
growth has prompted proposals for new water 
diversions and transfers from agriculture. 
While desalination of seawater and brackish 
water has been proposed as a partial solution 
to water scarcity, its high energy requirement 
creates greenhouse gas emissions and its 
capital costs are high.15

Atmospheric rivers, which have caused many 
large floods in California,120 may increase in 
severity and frequency under climate  
change.82,83,107,121,122,123,124 In the winter of 
2016–2017, a series of strong atmospheric 
rivers generated high runoff in northern 
California and filled reservoirs. At Oroville 
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Dam, high flows eroded the structurally 
flawed emergency spillway, caused costly 
damage, and led to the preventive evacuation 
of people living downstream. In addition to the 
immediate threat to human life and property, 
this incident revealed two water supply risks. 
First, summer water supplies are reduced 
when protective flood control releases of water 
from reservoirs are necessary in the spring.108 
Second, several studies have concluded that 
deteriorating dams, spillways, and other 
infrastructure require substantial maintenance 
and repair.125,126 In U.S.–Mexico border cities 
with chronic urban storm water and pollutant 
runoff problems127 and populations vulnerable 
to flooding,127,128 projected increases in heavy 
precipitation88 would increase risks of floods.

Wet periods present a water resource opportuni-
ty because increased infiltration from the surface 

into the ground recharges groundwater aquifers. 
Groundwater was critical for farmers during the 
California drought, especially for fruit and nut 
trees and grapevines.129,130,131 Overdraft of ground-
water, however, caused land subsidence (sinking), 
which can permanently reduce groundwater 
storage capacity and damage infrastructure as 
the ground deforms.132

In light of projected future changes in the 
hydrologic cycle, water resource planners and 
scientists are testing new techniques to combine 
results from multiple climate and hydrology 
models, downscale climate model output to 
finer geographic scales, calculate changing 
water demands, and use forecasts for flood 
control.133,134,135,136 Integrating data from satellites, 
climate and hydrology models, and field observa-
tions remains difficult with existing water man-
agement tools, methods, and legal requirements.

Box 25.1: Collaborative Management of Colorado River Water

Since 2000, Lake Mead on the Colorado River has 
fallen 130 feet (40 m) and lost 60% of its vol-
ume,137,138,139 a result of the ongoing Colorado River 
Basin drought and continued water withdrawals by 
cities and agriculture (Figure 25.3). This is the low-
est level since the filling of the reservoir in 1936.139 
The reduction of Lake Mead increases the risk of 
water shortages across much of the Southwest 
and reduces energy generation at the Hoover Dam 
hydroelectric plant at the reservoir outlet. Local 
water utilities, the governments of seven U.S. 
states, and the federal governments of the United 
States and Mexico have voluntarily developed and 
implemented solutions to minimize the possibility 
of water shortages for cities, farms, and ecosys-
tems. The parties have taken four key actions:

1.	 Arizona, California, and Nevada agreed in 2007, with Mexico joining in 2012, to allow users to store water in 
Lake Mead for later years, rather than being forced to use it immediately or lose their rights.140

2.	 The United States and Mexico agreed in 2014 to release water for eight weeks to re-water the Colorado River 
Delta in Mexico in order to improve wildlife habitat and to conduct research on environmental restoration.141

Hydrological drought in Lake Mead, Nevada, on March 10, 2014. 
Photo credit: U.S. Bureau of Reclamation.
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3.	 The water agencies of Denver, Las Vegas, Los Angeles, and Phoenix and the U.S. Bureau of Reclamation 
in 2015 set up the Colorado River System Conservation Pilot Program, a fund for local water conservation 
projects. A second phase extended conservation projects to all of the Colorado River Basin.

4.	 Mexico agreed in 2017 to absorb a share of water shortages if Lake Mead fell below a specific elevation. 
The agreement continues Mexico’s right to bank unused water in Lake Mead for future use. With financial 
and other U.S. assistance, Mexico will pursue water conservation projects and environmental restoration 
within the Colorado River Delta.

Currently, stakeholders are engaged in drought contingency planning for multiple climate futures, imple-
menting management strategies that make sense for the range of climate futures, and preserving options 
when possible.142

Box 25.1: Collaborative Management of Colorado River Water, continued

Severe Drought Reduces Water Supplies in the Southwest

Figure 25.3: Since 2000, drought that was  intensified by long-term trends of higher temperatures due to climate change 
has reduced the flow in the Colorado River (top left), which in turn has reduced the combined contents of Lakes Powell 
and Mead to the lowest level since both lakes were first filled (top right). In the Upper Colorado River Basin  that feeds 
the reservoirs, temperatures have increased (bottom left), which increases plant water use and evaporation, reducing lake 
inflows and contents. Although annual precipitation (bottom right) has been variable without a long-term trend, there has been 
a recent decline in precipitation that exacerbates the drought. Combined with increased Lower Basin water consumption that 
began in the 1990s, these trends explain the recently reduced reservoir contents. Straight lines indicate trends for temperature, 
precipitation, and river flow. The trends for temperature and river flow are statistically significant. Sources: Colorado State 
University and CICS-NC. Temperature and precipitation data from: PRISM Climate Group, Oregon State University,  
http://prism.oregonstate.edu, accessed 20 June 2018.

http://prism.oregonstate.edu/
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Key Message 2 
Ecosystems and Ecosystem Services

The integrity of Southwest forests and 
other ecosystems and their ability to 
provide natural habitat, clean water, and 
economic livelihoods have declined as a 
result of recent droughts and wildfire due 
in part to human-caused climate change. 
Greenhouse gas emissions reductions, 
fire management, and other actions 
can help reduce future vulnerabilities of 
ecosystems and human well-being.

The forests and other ecosystems of the South-
west region that provide natural habitat and 
essential resources for people have declined 
in fundamental ways due in part to climate 
change. Vast numbers of trees have died across 
Southwest forests and woodlands,143,144,145,146 
disproportionately affecting larger trees.147 
Tree death in mid-elevation conifer forests 
doubled from 1955 to 2007 due in part to 
climate change.146 Field measurements showed 
that changes attributable, in part, to climate 

change, including increases in temperature, 
wildfire,7 and bark beetle infestations,148,149 
outweighed non-climate factors such as fire 
exclusion or competition for light.146

Wildfire is a natural part of many ecosystems in 
the Southwest, facilitating germination of new 
seedlings and killing pests. Although many eco-
systems require fire, excessive wildfire can per-
manently alter ecosystem integrity.150,151 Climate 
change has led to an increase in the area burned 
by wildfire in the western United States.7,152 
Analyses estimate that the area burned by wildfire 
from 1984 to 2015 was twice what would have 
burned had climate change not occurred (Figure 
25.4).7 Furthermore, the area burned from 1916 to 
2003 was more closely related to climate factors 
than to fire suppression, local fire management, 
or other non-climate factors.152

Climate change has driven the wildfire 
increase,7,153 particularly by drying forests and 
making them more susceptible to burning.154,155 
Specifically, increased temperatures have 
intensified drought in California,14 contributed 
to drought in the Colorado River Basin,12,13 

Climate Change Has Increased Wildfire

Figure 25.4: The cumulative forest area burned by wildfires has greatly increased between 1984 and 2015, with analyses 
estimating that the area burned by wildfire across the western United States over that period was twice what would have burned 
had climate change not occurred. Source: adapted from Abatzoglou and Williams 2016.7 
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reduced snowpack,46,49,156 and caused spring-
like temperatures to occur earlier in the 
year.101 In addition, historical fire suppression 
policies have caused unnatural accumulations 
of understory trees and coarse woody debris 
in many lower-elevation forest types, fueling 
more intense and extensive wildfires.150,157

Wildfire can threaten people and homes,159 par-
ticularly as building expands in fire-prone areas. 
Wildfires around Los Angeles from 1990 to 2009 
caused $3.1 billion in damages (unadjusted for 
inflation).159 Respiratory illnesses and life disrup-
tions from the Station Fire north of Los Angeles 
in 2009 cost an estimated $84 per person per day 
(in 2009 dollars).160 In addition, wildfires degraded 
drinking water upstream of Albuquerque with 
sediment, acidity, and nitrates161,162 and in Fort 
Collins, Colorado, with sediment and precursors 
of cancer-causing trihalomethane, necessitating 
a multi-month switch to alternative municipal 
water supplies.163,164

Ecosystems can naturally slow climate change 
by storing carbon, but recent wildfires have 
made California ecosystems and Southwest 
forests net carbon emitters (they are releasing 
more carbon to the atmosphere than they are 
storing).6,144,165 Wildfire has also exacerbated the 
spread of invasive plant species and damaged 
habitat. For example, repeated wildfire in sage-
brush in Nevada and Utah has caused extensive 
invasions of cheatgrass, reducing habitat for 
the endangered sage-grouse.64,166

Post-wildfire erosion damages ecosystems by 
denuding hillsides, such as occurred in Valles 
Caldera National Preserve in New Mexico 
when the 2011 Las Conchas Fire generated the 
biggest local erosion event in 1,000 years.167 
In New Mexico, consecutive large wildfires 
degraded habitat and reduced abundance of six 
out of seven native coldwater fishes and some 
native insects, although nonnative fishes were 
less affected.168

With continued greenhouse gas emissions, 
models project more wildfire across the South-
west region.169,170,171,172,173 Under higher emissions 
(SRES A2)174 (see the Scenario Products section 
of App. 3), fire frequency could increase 25%,172 
and the frequency of very large fires (greater 
than 5,000 hectares) could triple.169 The Santa 
Ana winds and other very dry seasonal winds 
increase fire risk in California175 and Mexico.176 
Under higher emissions (SRES A2), sediment 
flows after fires would double in one-third of 
western U.S. watersheds modeled,177 with the 
sediment potentially damaging ecosystems, 
homes, roads, and rail lines (Ch. 12: Trans-
portation; Ch. 17: Complex Systems). Under 
the higher scenario (RCP8.5), cumulative 
firefighting costs for the Southwest could total 
$13 billion from 2006 to 2099 (in 2015 dollars, 
discounted at 3%).178

Reducing greenhouse gas emissions can reduce 
ecological vulnerabilities to wildfire.179 For 
example, under a higher emissions scenario 
(SRES A2), climate change could triple burned 
area (in a 30-year period) in the Sierra Nevada 
by 2100, while under a lower emissions 
scenario (SRES B1174), fire would only slight-
ly increase.173 

Allowing naturally ignited fires to burn in wil-
derness and preemptively setting low-severity 
prescribed burns in areas of unnatural fuel 
accumulations can reduce the risk of high- 
severity fires under climate change.180,181,182,183,184 
These actions can naturally reduce or slow 
climate change because long-term storage of 
carbon in large trees can outweigh short-term 
emissions.185,186 Proactive use of fire in Yosem-
ite, Sequoia, and Kings Canyon National Parks 
has improved the resilience of giant sequoias 
and other trees to severe fires and protected 
their stores of carbon.187,188,190,191

Climate change has also contributed to 
increased forest pest infestations, another 
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major cause of tree death in Southwest forests 
and woodlands (Ch. 17: Complex Systems, 
Box 17.4). Bark beetle infestations killed 7% of 
western U.S. forest area from 1979 to 2012,148,149 
driven by winter warming due to climate 
change103,192 and by drought.193 Tree death from 
bark beetles in Colorado increased organic 
matter in local streams, elevating precursors 
of cancer-causing trihalomethane in local 
water treatment plants194 to levels that exceed 
the maximum contaminant levels for drinking 
water specified by the U.S. Environmental 
Protection Agency.195 Without greenhouse gas 
emissions reductions, further increases in heat 
and drought could kill many more trees,143,196,197 
especially affecting piñon pine,198 whitebark 
pine,199 and tall old-growth trees.200 Drought 
hastens tree mortality over a wide range of 
temperatures.201 On the Colorado Plateau in 
Utah, five years of hotter temperatures in 
experiments killed microbial biocrusts, which 
conserve soil fertility and protect soils from 
erosion.202,203,204 In addition, grasslands205,206 
and desert plants207,208 are vulnerable to 
increased plant death.

Field research in Southwest ecosystems has 
detected geographic shifts (Ch. 7: Ecosystems) 
of both plant and animal species, partly attrib-
utable to climate change. In Yosemite National 
Park, forest shifted into subalpine meadows 
from 1880 to 2002,209 and small mammals 
shifted 1,600 feet (500 m) upslope from 1914 to 
2006,210 with climate change outweighing other 
factors as the cause.209,210 Across the United 
States, including the Southwest, birds shifted 
northward between 0.1 and 0.5 miles (0.2 to 0.8 
km) per year from 1975 to 2004, and analyses 
attribute the shift to climate change.211,212

Continued climate change would cause north–
south or upslope shifts of biomes (major vegeta-
tion types) in the Southwest as vegetation follows 
cooler temperatures.213 Areas highly vulnerable 
to such biome shifts include the Arizona Sky 

Islands214 and the Sierra Nevada.215 Potential shifts 
of suitable habitat for individual species include 
the shifting of Joshua tree habitat out of much 
of Joshua Tree National Park,207,216 American pika 
habitat shifting off of mountain tops,217,218 and 
upslope or northward shifts of numerous birds 
and reptiles across the Southwest.219,220,221 Climate 
change may also cause shifts in the timing of 
plant and animal life events (phenology), including 
flower blooming, plant leafing, and breeding time 
of birds and other animals.222,223,224 The arrival of 
migrating broad-tailed hummingbirds in Colora-
do advanced five days between 1975 and 2011.225 
Plant species that provide essential food (nectar) 
for the hummingbirds also shifted in phenology 
(Ch. 7: Ecosystems), but much more than the 
birds, potentially jeopardizing breeding success.

To prepare for potential future ecological 
changes, U.S. federal agencies have begun to 
integrate climate change science into resource 
management planning in the Southwest. For 
example, the U.S. National Park Service has 
developed park plans with specific actions for 
managing resources under climate change.226 
On private lands, planning that integrates 
native plants and wildlife into working land-
scapes such as farms, orchards, and ranches 
can promote conservation outside of protected 
areas and provide valued ecosystem services, 

The 2013 Rim Fire in California burned more than 257,000 
acres, the second largest wildfire in the Sierra Nevada and 
the third largest fire in California since 1932. Photo credit: 
Mike McMillan, U.S. Forest Service. 
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as demonstrated for rangelands by the Malpai 
Borderlands Group in Arizona and New 
Mexico.227,228 In response to severe wildfires, 
the City of Flagstaff, Arizona, enacted a bond 
to provide funds to thin forest around the 
town perimeter.229,230 Ecosystem restoration 
provides an opportunity to integrate climate 
change considerations into natural resource 
management.231 Desert research scientists 
have developed the ability to grow microbial 
biocrusts and are testing whether translocating 
biocrusts that are adapted to thrive at higher 
temperatures can restore the soil-stabilizing, 
nutrient-fixing, and other services that these 
organisms provide in many Southwest desert 
ecosystems.232,233,234 Finally, conservation of 
forests, especially coast redwoods, which have 
the highest carbon densities of any ecosystem 
in the world,235 can slow or reduce climate 
change by naturally removing carbon from 
the atmosphere.6

Key Message 3 
The Coast

Many coastal resources in the South-
west have been affected by sea level 
rise, ocean warming, and reduced ocean 
oxygen—all impacts of human-caused 
climate change—and ocean acidifica-
tion resulting from human emissions 
of carbon dioxide. Homes and other 
coastal infrastructure, marine flora and 
fauna, and people who depend on coastal 
resources face increased risks under 
continued climate change.

At the Golden Gate Bridge in San Francisco, sea 
level rose 9 inches (22 cm) between 1854 and 
2016 (Figure 25.5),236 and in San Diego, sea level 
rose 9.5 inches (24 cm) from 1906 to 2016.237 
Tidal gauges around the world show increases 
in sea level,238,239 and analyses show that climate 
change caused most of this rise by melting 

of land ice and thermal expansion of ocean 
water.21,240,241 Non-climate-related land level 
changes influence relative sea level change. For 
example, between Cape Mendocino, California, 
and the Oregon border, lifting of the land at 
the San Andreas Fault has caused a drop in 
relative sea level between 1933 and 2016. Past 
earthquakes in the northern California coastal 
zone have abruptly lowered the shoreline and 
raised relative sea level.242

Under the higher scenario (RCP8.5), continued 
climate change could raise sea level near San 
Francisco by 30 inches (76 cm) by 2100, with a 
range of 19–41 inches (49–104 cm).242 Currently, 
200,000 people in California live in areas 3 feet 
(0.9 m) or less above sea level.9 Projections of 
sea level rise show that this population lives 
in areas at risk of inundation by 2100.9 Storm 
surges and high tides on top of sea level rise 
would exacerbate flooding.242 In Redwood 
City, one-fifth of houses and one-quarter of 
roads are at risk of flooding under the higher 
scenario (RCP8.5) by 2100.243 Sea level rise and 
storm surge could completely erode two-thirds 
of southern California beaches by 2100244 and 
cause saltwater infiltration that would spoil 
groundwater at Stinson Beach in Marin County, 
California.245 Major seaports in Long Beach and 
Oakland and the international airports of San 
Francisco, Oakland, and San Diego are vulner-
able. Projected sea level rise and storm surges 
could cause as much as $5 billion (2015 dollars, 
undiscounted) in damage to property along 
the California coast from 2000 to 2100 under 
the higher scenario (RCP8.5).178 In Point Reyes 
National Seashore, sea level rise threatens to 
inundate habitat for the endangered western 
snowy plover, harbor seals,246 and northern 
elephant seals,247 as well as archaeological 
Indigenous sites.

Governments and private landowners along 
the California coast have built seawalls, revet-
ments, and other structures to protect against 
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sea level rise and storm surge, armoring 10% of 
the coastline.248 Because hard structures often 
alter natural water flows and increase coastal 
erosion, many parties are now exploring how 
to restore dunes, reefs, wetlands, and other 
natural features to protect the coast by break-
ing wave energy, to increase wildlife habitat, 
and to preserve public access to the coast.249

Local governments on the California coast are 
using projections of sea level rise to develop plans 
to reduce future risks. The City of San Francis-
co250 is implementing a plan that limits building in 
low-lying areas, constructs terraced wetlands at 
India Basin to facilitate upland migration of marsh 
habitat, and protects San Francisco International 
Airport with berms and seawalls along the 
8-mile (13 km) shoreline. Golden Gate National 
Recreation Area has produced a detailed spatial 
analysis of the vulnerability of the marsh, paths, 
and buildings at Crissy Field to sea level rise 

and storm surges and has developed adaptation 
options, including moving infrastructure and 
establishing protective wetlands on inundated 
land.251 In 2016, residents of the nine counties of 
the San Francisco Bay passed Measure AA, which 
provides funding for wetlands restoration to 
naturally reduce risks of flooding and inundation 
due to sea level rise and storm surge.

Ocean waters off the California coast and around 
the world warmed 0.6° to 0.8ºF (0.3° to 0.5ºC) 
from 1971 to 2010,252 mainly due to human-caused 
climate change.21 Over the past century, sea sur-
face temperatures in the northeast Pacific Ocean 
(including those off the coast of California) also 
experienced large year-to-year and decade-to-
decade variations in response to changes in wind 
and weather patterns that altered the exchange 
of heat between the ocean and atmosphere and 
within the upper ocean,253 but showed overall 
warming from 1920 to 2016 (Figure. 25.6). 

Sea Level Rise

Figure 25.5: Sea level rise increases risks to infrastructure. At the Golden Gate Bridge in San Francisco, California, the tidal 
gauge with the longest time series in the Western Hemisphere shows that sea level has risen nearly 9 inches (22 cm) since 1854 
(blue line).236,295 In 1897, the tidal gauge was moved, which caused a slight shift downward of the numerical level but no change 
in the long-term trend (trends indicated by the black lines). The bars show models projections of sea levels under a higher 
scenario (RCP8.5; red) and a very low scenario (RCP2.6; green).242 The change in sea level is shown relative to the 1991–2009 
average. Source: National Park Service. 
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The marine heat wave along the Pacific Coast 
from 2014 to 2016 occurred due to a combination 
of natural factors and climate change.254 The 
event led to the mass stranding of sick or starving 
birds and sea lions and shifts in pelagic (open 
water) red crabs and tuna into the region.255 The 
ecosystem disruptions contributed to closures of 
commercially important fisheries and substantial 
reductions in California salmon catches in 2016 
and 2017.256,257,258 Ocean warming also contributed 
to an increase in harmful blooms of algae along 
the Pacific Coast.259,260,261,262 These harmful algal 
blooms have produced domoic acid, which can 
kill people who eat tainted shellfish261,263 and kill 
California sea lions.261,264,265 Harmful algal blooms 
and shellfish contamination in the record warm 
year of 2015 delayed the commercially important 
Dungeness crab fishery, which contributed to a 
substantially reduced catch. Shifts in the timing 
of Dungeness and rock crab fisheries into whale 
migration season in 2016 contributed to increases 
in whale entanglements in fishing gear.266

Continued climate change could warm 
California Current waters 4°–7°F (2°–4°C) 
above the 1980–2005 average by 2100 (Figure 
25.6).267 This could contribute to more harmful 
algal blooms,259,261 deaths of birds and sea 

lions, closures of fisheries, and economic loss 
to sectors dependent upon coastal marine 
resources. Under higher emissions (SRES A2), 
28 fish species, including coho salmon and 
steelhead, could shift northward more than 
180 miles (300 km) by 2050 due to higher sea 
surface temperatures.268 Marine heat waves 
may also increase in frequency, possibly 
causing local disappearance of some fish and 
economic losses.269

Observed ocean water acidity off the coast of 
California increased 25% to 40% (decreases 
of about 0.10 to 0.15 pH units) from the prein-
dustrial era (circa 1750) to the early 2000s270,271 
due to increasing emissions of carbon dioxide 
from human activities.21,272 Modeling studies 
show that human-caused changes in ocean 
acidity have increased beyond what would be 
expected from natural variations in the early-
to-mid-20th century.273 Along the California 
coast, during some episodes of naturally 
acidic spring/summer upwelling of deeper 
ocean water, ocean acidity has quadrupled (a 
decrease of 0.7 pH units) to some of the most 
acidic values in the world.274 Increased ocean 
acidity along California’s coast has dissolved 
shells of some small planktonic sea snails 

Ocean Temperature Increase

Figure 25.6 Ocean warming increases risks to fisheries and shellfish. The graph shows observed ocean temperatures of the California 
Current from measurements (black line); modeled temperatures, extended into the future under the higher scenario (RCP8.5; red line); 
and the range of 10% to 90% of the 28 models used (pink).254,296,297 Sources: National Park Service and NOAA.
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(pteropods), exceeding their adaptive capacity, 
which was developed from evolution in natural 
acidic upwellings.275,276,277 In contrast, nearshore 
kelp forests in the northern Channel Islands 
off the California coast experienced few acidic 
events compared to local mainland sites in one 
three-year study.278

Higher carbon emissions (SRES A2) could 
increase the acidity of California coastal waters 
40% (a decrease of 0.15 pH units) above 1995 
levels by 2050.270 In addition to damaging 
marine ecosystems, ocean acidification 
increases risks of economic losses in the shell-
fish industry. One ecosystem modeling study 
suggests negative effects of projected ocean 
acidification on California’s state-managed 
crab, shrimp, mussel, clam, and oyster fish-
eries, but an increase in the urchin fishery.279 
Warming of ocean waters has reduced oxygen 
concentrations in the California Current 
System by 20% from 1980 to 2012.280,281 Dis-
solved oxygen variations in waters far offshore 
affect oxygen concentrations in the California 
Current System nearshore.280,282 This deoxygen-
ation contributed to an expansion of Humboldt 
squid, a species that thrives in deoxygenated 
water, in the northeastern Pacific Ocean in the 
late 1990s.283,284 Invading Humboldt squid prey 
on hake and other fish that are commercially 
important to coastal fishing communities.283

Climate change may reduce ocean oxygen in 
Pacific Ocean waters to levels lower than any 
naturally occurring levels as early as 2030285 
or 2050.273 Reduced oxygen could decrease 
rockfish habitat off southern California by 20% 
to 50%.286 Further deoxygenation may harm 
bottom-dwelling marine life, shrink open- 
water habitat for hake and other economically 
important species,287 and increase the number 
of invasions by squid. Tracking the variability 
of ocean waters and fish populations and 
adjusting catch quotas accordingly can reduce 
pressures on fisheries stressed by climate 

change,288 actions that have been identified as 
parts of the National Oceanic and Atmospheric 
Administration’s (NOAA) Fisheries Climate 
Science Strategy.289

With continued climate change, risks would 
cascade from one area to another. For example, 
projected warmer winter temperatures in the 
Sierra Nevada would increase winter runoff, 
reduce spring and summer freshwater inflows 
into San Francisco Bay, and increase salinity in 
the Bay 3 to 5 grams per kilogram of water by 
2100.290,291,292 Also, sea level rise and storm surge 
would compound effects inland of river and 
stream flooding, putting houses and roads at 
risk of inundation and damage.293,294

Key Message 4 
Indigenous Peoples

Traditional foods, natural resource-based 
livelihoods, cultural resources, and spir-
itual well-being of Indigenous peoples in 
the Southwest are increasingly affected 
by drought, wildfire, and changing ocean 
conditions. Because future changes 
would further disrupt the ecosystems on 
which Indigenous peoples depend, tribes 
are implementing adaptation measures 
and emissions reduction actions.

Droughts in the Southwest have contributed to 
declines in traditional Indigenous staple foods, 
including acorns, corn, and pine nuts.298,299,300 
Drought and increasing heat intensify the arid 
conditions of reservations where the United 
States restricted some tribal nations in the 
Southwest region to the driest portions of their 
traditional homelands.301 Navajo elders tell of 
the increasingly arid conditions over the last 
half of the 20th century that contributed to 
declines in culturally significant crops, the flow 
of specific water springs and seeps, and wildlife 
populations, such as eagles.44,302 Projected 
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reductions in water supply reliability,13,114 cou-
pled with water agreements that involve selling 
or leasing tribal water to neighboring com-
munities, could place tribal water supplies at 
risk during severe shortages. As water supplies 
decrease and water demand increases, tribes 
are at risk of finding themselves committed to 
providing purchased water to other entities, 
resulting in situations in which, in the words 
of one elder, “water sold must be delivered, 
regardless of the condition of the selling 
reservation. In this worst-case scenario, the 
Community will have to breach its contracts 
for the survival of its people.”303

In addition to drought, wildfires affect tradi-
tional resources, including fish, wildlife, and 
plants, such as tanoaks and beargrass, upon 
which some Southwest tribes rely for food and 
cultural uses.304,305,306 Continued climate change 
would reduce populations of some fish, wild-
life, and plants that serve as traditional foods, 
medicines, and livelihood and cultural resourc-
es.298,307,308 Reduced availability of traditional 
foods often contributes to poorer nutrition and 
an increase in diabetes and heart disease.298,309 
Reductions in runoff would, for example, 
increase the salinity of Pyramid Lake in Neva-
da, reducing fish biodiversity and affecting 
the cui-ui fish, the primary cultural resource 
of the Pyramid Lake Paiute Tribe.310 Tribes in 
the Southwest that depend on livestock are at 
risk of climate-related degradation of range-
lands.44,311,312 Many California tribes, including 
the Miwok, Paiute, Western Mono, and Yurok, 
among others, are concerned about the loss of 
acorns—a nutritious traditional food, medicine, 
and basketry component313,314—due to sudden 
oak death, which can increase with changes in 
humidity and temperature.44,312,315 Changes in 
plant and animal ranges (Ch. 7: Ecosystems, KM 
1) can also affect mental and spiritual health, 
disrupting cultural connections to disappearing 
plant and animal relatives and to place-based 
identity and practices.42,316

Changes in marine ecosystems affect resources 
for Indigenous peoples (Ch. 15: Tribes). Ocean 
warming affects salmon and other fish on 
which Pacific Coast tribes rely for subsistence, 
livelihoods, and cultural identity.307,317,318,319,320 
Ocean warming and acidification, as well as sea 
level rise, increase risks to shellfish beds (which 
reduces access for traditional harvesting),298 
pathogens that cause shellfish poisoning,307,311 
and damage to shellfish populations, which can 
cause cascading effects in food and ecological 
systems upon which some tribes depend.298,321

Although Indigenous peoples have adapted to 
climate variations in the past, historical inter-
generational trauma, extractive infrastructure, 
and socioeconomic and political pressures322,323 
reduce their adaptive capacity to current and 
future climate change (Ch 15: Tribes, KM 1 and 
3).324 Still, in response to climate change, Indig-
enous peoples in the Southwest are developing 
new adaptation and mitigation actions based 
on a cultural model focused on relationships 
between humans and nonhumans.313,325,326 Tra-
ditional ecological knowledge of specific plants 
and habitats can enable Indigenous peoples to 
provide early detection of invasive species and 
support to ecological restoration.327 Some tribes, 
such as the Tesuque Pueblo of New Mexico, use 
their knowledge to reintegrate traditional foods 
into their diets. Other tribes, such as the Karuk 
Tribe,304 North Fork Mono,313 and Mountain 
Maidu328 use traditional ecological knowledge to 
guide natural resource management. The Yurok 
Tribe, Gila River Indian Community, and Tohono 
O’odham Nation, among others, are developing 
climate adaptation plans, often in partnership 
with universities and other research institutions 
(Ch. 15: Tribes, KM 3 and Figure 15.1).

Many Indigenous peoples in the Southwest 
region have traditionally used fire as a tool 
central to cultural and spiritual practices. They 
use fire to protect and enhance species used 
for basket weaving, medicines, and traditional 
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Case Study: Cultural Fire and Climate Resilience

Indigenous peoples in the Southwest have traditionally used fire as a tool central to social, cultural, and spiritual 
practices. They use fire to increase ecosystem resilience, reduce fuel loads, manage crops, and protect species 
used for basket weaving, medicines, and traditional foods.306,313,328,329,330,331,332 Tribal entities are restoring cultural 
burning practices and management principles that guide the use of fire on the landscape to reduce wildfire risks 
and protect public and tribal trust resources.331,333 For example, Yurok tribal members have formed the Cultural 
Fire Management Council (CFMC), in partnership with the Nature Conservancy Fire Learning Network, Firestorm 
Inc., Yurok Forestry/Wildland Fire, Northern California Indian Development Council, and the U.S. Department of 
Agriculture (USDA) Forest Service, to bring fire back to the landscape for ecosystem restoration.334 The collab-
oration builds capacity and trains Yurok and local fire crews through the Prescribed Fire Training Exchange. 
“Restoration of the land means restoration of the people,” said CFMC President Margo Robbins, “Returning fire 
to the land enables us to continue the traditions of our ancestors.”334

Cultural Fire on Yurok Reservation
Figure 25.7: Andy Lamebear, a Yurok Wildland Fire Department firefighter and Yurok tribal member, ignites a cultural burn 
on the Yurok Reservation. The tribe uses low- to medium- intensity fires to enhance the production of plant-based medicines, 
traditional basket materials, native fruits, and forage for wildlife. Cultural burning also reduces risks of catastrophic wildfire. 
Photo courtesy of the Yurok Tribe.

foods.306,313,328,329,330,331,332 This cultural use of fire 
offers an important tool for adaptation and 
mitigation, as traditional burning reduces fuel 

accumulations that can lead to high-severity 
wildfires (see Case Study “Cultural Fire and 
Climate Resilience” and Figure 25.7).331,333
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Key Message 5 
Energy

The ability of hydropower and fossil 
fuel electricity generation to meet 
growing energy use in the Southwest is 
decreasing as a result of drought and 
rising temperatures. Many renewable 
energy sources offer increased elec-
tricity reliability, lower water intensity 
of energy generation, reduced green-
house gas emissions, and new eco-
nomic opportunities.

Hydroelectric generation depends on sufficient 
water supplies. The severe drought in Califor-
nia, intensified by climate change,14,56 reduced 
hydroelectric generation by two-thirds from 
2011 to 2015.335 Drought in the Colorado River 
Basin13,59 caused river runoff, on which hydro-
electric generation depends,12,336,337 to decline. 
By 2016, Lake Mead, which stores water for 
drinking, agriculture, and the Hoover Dam 
hydroelectric plant, had fallen by half (Box 
25.1 and Figure 25.3). Although the Bureau of 
Reclamation maintained constant electricity 
generation at Hoover Dam throughout the 
drought, this decline potentially reduces maxi-
mum generation capacity.

In California, utilities increased fossil fuel 
generation of electricity to compensate for 
the drought-driven decline in hydroelectricity, 
increasing state carbon dioxide emissions in 
the first year of the drought (2011 to 2012) by 1.8 
million tons of carbon, the equivalent of emis-
sions from roughly 1 million cars.338,339 A drop in 
the price of natural gas also contributed to the 
increase, although the shift from hydroelectric 
to fossil fuels cost California an estimated $2.0 
billion (in 2015 dollars).340 Other southwestern 
states also shifted some generation from 
hydropower to fossil fuels.89

Under a higher scenario (RCP8.5), declines in 
snowpack and runoff in the Colorado River 
and Rio Grande Basins and a shift of spring 
runoff to earlier in the year105 would reduce 
hydroelectric power potential in the region by 
up to 15% by 2050.91 Under a very low scenario 
(RCP2.6), hydroelectric generation may remain 
unchanged, demonstrating the positive bene-
fits of emissions reductions.91 With increased 
precipitation, hydroelectric potential could 
increase,342 except in cases of reservoir spillage 
to protect dams in extreme storms.343

The efficiency of water-cooled electric power 
plants that burn fuel depends on the tempera-
ture of the external cooling water, so climate 
change could reduce energy efficiency up to 
15% across the Southwest region by 2050.91 
Since higher temperatures also increase elec-
tric resistance in transmission lines, electricity 
losses in many transmission lines across the 
Southwest could reach 5% by 2080 under a 
lower scenario (RCP4.5) and 7% under a higher 
scenario (RCP8.5).344 Under the higher scenario 
(RCP8.5), water demand by thermoelectric 
plants in the Southwest is projected to increase 
8% by 2100.345 In a 10-year drought, summer 
electric generating potential in the Southwest 
could fall 3% to 9% under higher emissions 
(SRES A2) or 1% to 7% under lower emissions 
(SRES B1; Figure 25.8).346

Any increase in water requirements for energy 
generation from fossil fuels would coincide 
with reduced water supply reliability from 
projected decreases in snowpack46,77 and earlier 
snowmelt.75,347 Increased agricultural water 
demands under higher temperatures could 
affect the seasonal demand for hydropower 
electricity.105 The water consumption, pollu-
tion, and greenhouse gas emissions of hydrau-
lic fracturing (fracking) make that source of 
fuel even less adaptive under climate change.348 
Substantial energy and carbon emissions are 
embedded in the pumping, treatment, and 
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transport of water, so renewable-powered 
water systems are less energy and carbon 
intense than ones powered by fossil fuels.349

Economic conditions and technological inno-
vations have lowered renewable energy costs 
and increased renewable energy generation 
in the Southwest. For example, wind energy 
generation in California rose by half from 2011 
to 2015, and solar energy generation increased 
by 15 times.335

Solar, wind, and other renewable energy 
sources, except biofuels, emit less carbon and 
require less water than fossil fuel energy. By 
cutting carbon emissions, renewable energy 
can reduce future impacts of climate change 
on nature and human well-being.30,350,351,352 After 
the first year of the drought, when natural gas 
burning increased to compensate for a loss of 
hydroelectric energy, solar and wind energy 
sources in California increased enough to 
displace 15% of fossil fuel burning for electric-
ity from 2012 to 2017, thereby reducing state 
greenhouse gas emissions by 6%.335 Increased 
electricity generation by renewable sources 

can cut water needs up to 90% in the South-
west, depending on the fraction of production 
derived from fossil fuels.353,354 Under a higher 
scenario (RCP8.5), conversion of two-thirds of 
fossil fuel plants to renewables would reduce 
water demand by half.345

State energy policies are facilitating the switch 
to renewable energy. Arizona, California, Col-
orado, Nevada, and New Mexico have enacted 
renewable energy portfolio standards.93 
California has set the highest standard: 50% 
of energy generation from renewable sources 
by 2030. In 2017, renewable energy sources 
supplied 32% of California energy genera-
tion.355 By 2013, these standards had averted 
26 trillion watt-hours of fossil fuel generation 
in the Southwest and 3% of carbon emissions 
nationally and had produced $5 billion in health 
benefits from reduced air pollution (in 2013 
dollars; $5.2 billion in 2015 dollars).356 Potential 
future benefits of existing renewable portfolio 
standards include carbon emission reductions 
of 6% nationally and health benefits of $560 
billion (in 2013 dollars; $577 billion in 2015 
dollars) from 2015 to 2050.357

Electricity Generation Capacity at Risk Under Continued Climate Change 

Figure 25.8: Under a higher emissions scenario (SRES A2174), heat-induced reduction of energy efficiency and reduced water 
flows would reduce summer energy generation capacity across the Southwest region. These projected reductions would increase 
risks of electricity shortages. The map shows projected changes for the period 2040–2060 compared to the period 1949–2010. 
Source: adapted from Bartos and Chester 2015.346 Reprinted by permission from Macmillan Publishers Ltd.
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Distributed solar energy systems place individ-
ual solar panels on roofs, on parking lot cano-
pies, and other built places. The high number 
of sunny days in the Southwest and the great 
extent of existing rooftops and parking lots 
create a high potential for distributed solar 
generation, which could provide two-thirds 
of electricity use in California.358 Distributed 
solar uses land that has already been urbanized 
and is close to energy users, reducing the need 
for transmission lines and transmission line 
electricity losses. Compared to industrial cen-
tralized solar power systems, distributed solar 
causes less death and disruption to wildlife that 
are already vulnerable to climate change, such 
as birds and endangered desert tortoises.359 
California, Colorado, and Nevada have enacted 
policies that support rooftop solar on homes, 
in particular net metering, in which customers 
sell their excess solar electricity to the grid.360 
Distributed wind energy systems can provide 
similar benefits.

Arizona, California, Colorado, Nevada, and New 
Mexico have enacted energy efficiency stan-
dards for utilities. California and New Mexico 
have also enacted policies that decouple utility 
profits from electricity sales.361 White or reflec-
tive roofs, known as cool roofs, increase energy 
efficiency of buildings. Under a higher scenario 
(RCP8.5), cool roofs would reduce urban heat 
islands in Los Angeles and San Diego 2°–4°F 
(1°–2°C) by 2050 and decrease energy use 
and the use of air conditioning.362 Urban tree 
planting in Phoenix that would increase tree 
cover from 10% to 25% would provide daytime 
cooling of up to 2°C in local neighborhoods.363

Newer technologies now allow generating 
plants to use nontraditional water sources, 
including saline groundwater, recycled 
water from landscaping, and municipal and 
industrial wastewater. For example, the Palo 
Verde Nuclear Generating Station in Arizona 

uses municipal wastewater.361 Other plants 
in the region use extremely water-efficient 
hybrid wet–dry cooling technology. For 
instance, the Afton Generating Station in 
New Mexico is a natural gas combined-cycle 
plant that uses hybrid cooling to reduce water 
intensity by 60% compared to conventionally 
cooled plants.361 

Electric cars can reduce fossil fuel use and 
greenhouse gas emissions compared to 
gasoline-powered vehicles. The relative 
greenhouse gas emissions from electric and 
gasoline vehicles depend on how the electricity 
is generated.364,365 If the electricity is produced 
from renewable sources, then the operating 
emissions for electric vehicles are near zero, 
although the manufacturing of the vehicle 
emitted greenhouse gases. Conversely, if the 
electricity is produced completely from fossil 
fuel, the emissions from the electric vehicle are 
higher because of the limit of energy efficiency 
of large power plants and transmission line 
losses. Because sunlight, wind, and other 
renewable resources are intermittent and 
sometimes not available at times of demand, 
charging at night and improvements in bat-
tery technology would facilitate renewable 
energy generation. 

Key Message 6
Food

Food production in the Southwest is 
vulnerable to water shortages. Increased 
drought, heat waves, and reduction of 
winter chill hours can harm crops and 
livestock; exacerbate competition for 
water among agriculture, energy gener-
ation, and municipal uses; and increase 
future food insecurity.
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Climate change has altered factors fundamen-
tal to food production and rural livelihoods 
in the Southwest, particularly the shortage 
of water caused by droughts in California14,56 
and the Colorado River Basin.13 The California 
drought led to losses of more than 10,000 jobs 
and the fallowing of 540,000 acres (220,000 
hectares), at a cost of $900 million in gross 
crop revenue in 2015.130 Increased tempera-
tures in the Southwest also affected agricultur-
al productivity from 1981 to 2010.366

Food production depends on reliable surface 
and groundwater supplies, which decline 
from droughts and reductions in snowpack 
and soil moisture.67 Irrigated agriculture and 
livestock water use accounted for approximately 
three-quarters of total water use in the South-
west in 2010, excluding Colorado, which has 
wide-ranging dryland wheat production.16,367,368 
In the recent California drought, domestic 
wells dried out in some rural communities, but 
increased groundwater pumping from deeper 
wells prevented some agricultural revenue loss-
es.369 Falling groundwater tables increase pump-
ing costs and require drilling to deepen wells.130 
Drought-related agricultural changes, stricter 
drilling regulations, and rapid aquifer depletion 
have already led to a decline in irrigation in parts 
of the region. According to climate projections 
for lower and higher emissions scenarios (RCP4.5 
and RCP8.5), future changes in climate would 
reduce aquifer recharge in the southern part of 
the region by 10%–20%,370 removing some of the 
secondary water source responsible for buffering 
effects of severe drought. In the Gila River Basin 
of New Mexico, farmers shift to groundwater 
pumping when surface water supplies are 
reduced, despite associated increases in produc-
tion costs.371 Under continued climate change, 
increased drought risk13 and higher aridity70 
could expose some agricultural operations in the 
Southwest to less reliable surface and groundwa-
ter supplies (Ch. 10: Ag & Rural, KM 1).

Under continued climate change, higher tem-
peratures would shift plant hardiness zones 
northward and upslope (Figure 25.9). These 
changes would affect individual crops differ-
ently depending on optimal crop temperature 
thresholds. Some crops, including corn372 and 
rice,373 are already near optimal thresholds in 
the Southwest. Increasing heat stress during 
specific phases of the plant life cycle can 
increase crop failures, with elevated tempera-
tures associated with failure of warm-season 
vegetable crops and reduced yields or quality 
in other crops.374 While crops grown in some 
areas might not be viable under hotter con-
ditions, crops such as olives, cotton, kiwi, and 
oranges may replace them.375 In parts of the 
Southwest region, increasing temperatures 
would prompt geographic shifts in crop pro-
duction, potentially displacing existing growers 
and affecting rural communities.376 Wine 
grape quality can be particularly influenced 
by elevated temperatures.377 Increased levels 
of ozone and carbon dioxide near the surface, 
combined with increases in temperature, can 
decrease food quality and nutritive values of 
fruit and vegetable crops.378,379

Because many fruit and nut trees require a 
certain period of cold temperatures in the 
winter, decreased winter chill hours under 
continued climate change would reduce 
crop yields, though the magnitude may vary 
considerably.380 In Yolo County, California, 
reduced winter chill may make conditions too 
hot for walnut cultivation by 2100.381 California 
almond acreage has nearly doubled over the 
last two decades due to high foreign demand 
and the favorable Mediterranean climate. 
California now produces over 80% of world 
almond supply.382 Since almonds also have a 
relatively high water requirement, both water 
and adequate cool winter temperatures will be 
important factors to maintain California tree 
nut production under climate change.
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Climate-related vulnerabilities of the South-
west region’s livestock industry include 
reduced long-term livestock grazing capacity, 
reduced feed supply, increased heat stress 
(Ch. 10: Ag & Rural, KM 3), and reduced forage 
quality.383 Water-intensive forage crops are 
especially vulnerable to water shortages.15 
Although livestock production systems persist 
in highly variable conditions, projected high 
temperatures may decrease production of 
rangeland vegetation and livestock forage.384 In 
response to drought (1999–2004), 75% of Utah 
ranch operations reported major reductions in 
water supply, forage, and cattle productivity.385 
Only 14% felt they were adequately prepared 
for the drought, which may be reflected in the 
high use of federal relief programs.

One potential adaptation of agriculture to 
drought is water banking, the storage of excess 
surface water in groundwater aquifers.386,387 For 
example, streamflows from the Sierra Nevada 
in high-precipitation years could provide sub-
stantial groundwater recharge in the California 
Central Valley.388 Additional options include 
expanding surface reservoir storage or relying 

upon groundwater pumping, although this 
further depletes limited groundwater stores.389

Flexible livestock management strategies, 
such as stocking rates, grazing management 
practices, employing livestock bred for arid 
environments, erosion control, and identifi-
cation of alternate forage supplies can help 
reduce vulnerability in an increasingly arid 
and variable climate.390,391 Criollo cattle appear 
well-suited for the arid Southwest because 
they are more heat tolerant and adaptive than 
traditional breeds.392

In urban areas across the Southwest, such as 
Tucson, Arizona, and Sacramento, California, 
community food banks that grow food in 
community gardens can help maintain food 
security in a drier and more variable climate. 
Urban gardens and local food organizations 
provide fresh produce, foster community edu-
cation, and support networks of local growers. 
These organizations build food systems capac-
ity, which helps to mitigate impacts of urban 
heat, reduces food transportation costs and 

Projected Shift in Agricultural Zones

Figure 25.9: The U.S. Department of Agriculture plant hardiness zones indicate the cold temperature requirements of crops. 
Increases in temperature under the higher scenario (RCP8.5), would shift these zones northward and upslope, from the period 
1976—2005 (left, modeled historical) compared to projections for 2070—2099 (right, average of 32 general circulation models). 
Sources: NOAA NCEI and CICS-NC.
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emissions, and supports provision of fresh local 
food to low-income urban dwellers.

Additional emerging issues that increase risks 
to food production include invasive nonnative 
or alien insect pests (introduced into the 
region intentionally or unintentionally) that 
are more adapted to hotter temperatures.393 
Global trade and efficient transportation 
also increase risks of invasion by alien insect 
pests. A mismatch in timing between plant 
flowering and the arrival of insect pollinators 
would reduce crop production and pollinator 
survival.393 In addition, some subsistence foods, 
such as fish, upon which some Indigenous and 
other subsistence and urban communities 
depend,309,394,395,396,397 and spiritually, socially, 
and culturally important tribal traditional 
foods298 would be vulnerable in a drier and 
more variable climate (Key Message 4). 

Key Message 7
Human Health

Heat-associated deaths and illnesses, 
vulnerabilities to chronic disease, and 
other health risks to people in the South-
west result from increases in extreme 
heat, poor air quality, and conditions that 
foster pathogen growth and spread. Im-
proving public health systems, commu-
nity infrastructure, and personal health 
can reduce serious health risks under 
future climate change.

Exposure to hotter temperatures and heat waves 
has led to heat-associated deaths and illnesses 
in Arizona and California.398,399,400,401,402,403 In the 
unprecedented 2006 California heat wave, which 
affected much of the state and part of Nevada, 
extremely high temperatures occurred day and 
night for more than two weeks.404 Compared to 
non-heat wave summer days, it is estimated that 
the event led to an additional 600 deaths, 16,000 

emergency room visits, 1,100 hospitalizations in 
California,399,405,406 and economic costs of $5.4 billion 
(in 2008 dollars).405 Parts of the Southwest region 
experienced record-breaking heat in five of the 
six years from 2012 to 2017.25,26,27,28,29 Assessments 
of the health impacts associated with record high 
temperatures in parts of the Southwest since 2010 
are not yet available in the scientific literature.

Under continued climate change, projected 
increases in hot days and extreme heat events in 
the Southwest (Figure 25.10)23,24,404,407 will increase 
the risk of heat-associated deaths.30 Under the 
higher scenario (RCP8.5), the Southwest would 
experience the highest increase in annual prema-
ture deaths due to extreme heat in the country, 
with an estimated 850 additional deaths per year 
and an economic loss of $11 billion (in 2015 dollars) 
by 2050.178 Under a lower scenario (RCP4.5), 
deaths and costs would be reduced by half com-
pared to the higher scenario (RCP8.5).178 By 2090, 
deaths and economic losses would more than 
double from 2050 under all emissions scenarios.178 
Heat and other environmental exposures partic-
ularly affect outdoor workers.178 Under the higher 
scenario (RCP8.5), extreme heat in the Southwest 
(Figure 25.10) would also lead to high labor losses, 
including losses of high-risk labor hours of up to 
6.5% for some counties by 2090 and of $23 billion 
per year in regionwide wages (in 2015 dollars).178 
It is projected that the lower scenario (RCP4.5) 
would reduce those wage losses by half.178

The risk of illness or death associated with extreme 
temperatures can be reduced through targeted 
public health and clinical interventions.30,32 The 
main factors that put individuals and populations 
at increased risk in a heat wave are age (children 
and older adults are most at risk), hydration status, 
and presence of a chronic disease such as obesity, 
cardiovascular or respiratory disease, or psychiatric 
illness.400,408,409,410,411,412,413,414,415 Psychosocial stresses and 
socioeconomic conditions, such as hot and poorly 
ventilated homes or lack of access to public emer-
gency cooling centers can elevate these risks.31,33,416
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Without adoption and implementation of 
strategies to minimize exposures to extended 
periods of extreme heat, the public health 
impacts of future heat waves may be as serious 
as those observed in California in 2006. The 
technological and behavioral adaptations to 
heat developed by populations in the South-
west are based on the observed historical 
range of nighttime minimum temperatures.404 
Projected increases in minimum temperatures 
and decreases in the number of cool nights23 
may diminish the efficacy of these adaptations.

Climate change and variability can also increase 
communicable and chronic disease bur-
dens.417,418,419 While infectious diseases like plague 
and hantavirus pulmonary syndrome dispro-
portionately affect the Southwest region,158 new 
research to support estimating future climate- 
associated risk for these diseases is sparse.420 
Therefore, this assessment focuses on recent 
developments in the understanding of heat, air 
quality, mosquito-borne diseases, and Valley fever 
and vulnerabilities that influence them. 

In addition to extreme heat, the environmental 
conditions of greatest concern for human health 
are ground-level ozone air pollution, dust storms, 
particulate air pollution (such as from wildfires 
and dust storms), aeroallergens (airborne 
substances that trigger allergic reactions), and 
low water quality and availability.30,178 In addition, 
alternating episodes of drought and extreme 
precipitation coupled with increasing tempera-
tures promote the growth and transmission of 
pathogens.30,421 The risk of onset or exacerbation 
of respiratory and cardiovascular disease is 
associated with a single or a combined exposure 
to ground-level ozone pollution, particulate air 
pollution, respiratory allergens, and extreme heat. 
Ground-level ozone is produced by chemical 
reactions of combustion-related chemicals (for 
example, from vehicles or wildfires) in a reaction 
that is dependent on ultraviolet radiation (that 
is, from the sun) and amplified by higher tem-
peratures. Once formed, ozone can travel great 
distances and persist in high concentrations 
overnight in rural areas. Among many health 
impacts, ozone can promote or aggravate asthma 
and respiratory allergies.422,423,424,425

Projected Increases in Extreme Heat

Figure 25.10: Under the higher scenario (RCP8.5), extreme heat would increase across the Southwest, shown here as the 
increase in the average number of days per year when the temperature exceeds 90°F (32°C) by the period 2036–2065, 
compared to the period 1976–2005.23 Heat waves increase the exposure of people to heat stroke and other illnesses that could 
cause death.30 Source: adapted from Vose et al. 2017.23
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Elevated levels of CO2 in conjunction with 
higher temperatures can increase the amount 
and potency of aeroallergens (Ch. 14: Human 
Health, KM 1). These conditions may also lead 
to new cases or exacerbation of allergy and 
asthma.426,427,428,429 Mortality risk during a heat 
wave is amplified on days with high levels of 
ground-level ozone or particulate air pollution, 
with the greatest mortality due to cardiovas-
cular causes.430

Severe dust storms in the Southwest con-
tribute to respiratory and cardiovascular 
disease.431,432 The association between Valley 
fever, a soilborne fungal respiratory infection 
of the Southwest, and warmer temperatures 
and soil dryness varies across the region and 
by time of year.189,433,434 The connection between 
climate change, dust storm frequency and 
severity, and future public health effects in the 
region is complex and remains an emerging 
area of research.435,436,437,438,439 Heat extremes, 
warming, and changes in precipitation will 
also influence the distribution and occurrence 
of vector-borne diseases like West Nile 
virus440,441,442,443 and may lead to the emergence 
of new disease (Ch. 14: Human Health, KM 1).30 
Without proactive interventions and policies 
that address the biological, exposure, and 
socioeconomic factors that influence individual 
and population vulnerability, adverse health 
impacts may increase (Ch. 14: Human Health, 
KM 2). Those increases may disproportionately 
affect people with the lowest incomes, which 
hinders adaptive capacity (Ch. 14: Human 
Health, KM 1).416,444

Climate-related hazards such as heat waves, 
flooding, wildfires, or large disease outbreaks 
require emergency responses. Prolonged 
droughts can affect drinking water availability, 
reduce water quality,445 and send more people 
seeking medical treatment.446,447 The increased 
burden of disease can outpace the resources 
and adaptive capacity of public health and 

clinical infrastructures. The region may not 
be prepared to absorb the additional patient 
load that could accompany climate change,448 
but integrating risk reduction strategies into 
emergency response plans and recognizing and 
addressing vulnerability factors can apprecia-
bly reduce risks of future adverse health con-
sequences (Ch. 14: Human Health, KM 3). This 
approach is embodied in the Centers for Dis-
ease Control and Prevention’s (CDC) Building 
Resilience Against Climate Effects framework 
for adaptation planning.449 Adaptation planning 
is already yielding health protection benefits.450

Local government agencies are preparing for 
extreme events by developing and updating 
emergency response plans and improving 
public warning and response systems. In 
2014, California updated its Contingency Plan 
for Excessive Heat Emergencies,451 Arizona 
released its Heat Emergency Response Plan,452 
and Salt Lake City, San Francisco, and Sonoma 
County were recognized in the first cohort 
of U.S. Department of Energy Climate Action 
Champions. Integrated and participatory 
planning for extreme heat,453 such as the 
Capital Region Climate Readiness Collaborative 
in Sacramento, California, can help overcome 
institutional and governance barriers to 
implementing adaptation actions (Ch. 28: 
Adaptation).454

Policies and interventions related to one health 
factor can positively affect other factors and 
yield co-benefits455,456,457,458,459 For example, 
research shows that heat-associated deaths 
and illnesses are preventable460 and that 
healthier individuals are less susceptible to 
adverse effects of extreme heat exposure. Obe-
sity, which affects about 30% of adults and 15% 
of school-age children and teens nationwide, 
increases the risk for many chronic diseases, 
such as asthma and diabetes, and increases 
the risk for serious heat-related adverse health 
outcomes.32,461,462,463 Access to healthcare, social 
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isolation, housing quality, and neighborhood 
poverty are also key risk factors for heat- 
related health impacts.31,33,412

Urban design strategies to address these risk 
factors include increasing walkability and 
bicycle safety and maintaining and planting 
trees and green space.464 These strategies can 
achieve multiple health benefits, including 
increasing physical activity, thereby helping 
residents maintain a healthy weight,465,466 
reducing the urban heat island effect,467 and 
reducing exposure to harmful air pollutants 
from vehicles. Reducing the urban heat island 
effect also reduces energy demand and risks of 
power outages, which can contribute to health 
risks, such as patients losing access to electric-
ity-dependent medical devices.

Climate change may weigh heavily on 
mental health in the general population and 
those already struggling with mental health 
disorders.468,469,470,471,472 One impact of rising 
temperatures, especially in combination with 
environmental and socioeconomic stresses, 
is violence towards others and towards 
self.473,474,475 Slow-moving disasters, such as 
drought, may affect mental health over many 
years.470 Studies of chronic stress indicate a 
potentially diminished ability to cope with 
subsequent exposures to stress.476,477,478

Populations under chronic social and economic 
stresses in urban and rural areas possess 
lower psychological, physical, and economic 

resilience (Ch. 10: Ag & Rural, KM 3). Commu-
nities that rely especially on well-functioning 
natural and agricultural systems in specific 
locations may be especially vulnerable to 
mental health effects when those systems 
fail. In the Southwest, the loss of stability and 
certainty in natural systems may affect physi-
cal, mental, and spiritual health of Indigenous 
peoples with close ties to the land.42,316 For 
example, extended drought raises concerns 
about maintaining Navajo Nation water-based 
ceremonies essential for spiritual health, liveli-
hoods, cultural values, and overall well-being.301 
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Traceable Accounts
Process Description
The authors examined the scientific literature in their areas of expertise. The team placed the 
highest weight on scientific articles published in refereed peer-reviewed journals. Other sources 
included published books, government technical reports, and, for data, government websites. The 
U.S. Global Change Research Program issued a public call for technical input and provided the 
authors with the submissions. The University of Arizona Center for Climate Adaptation Science 
and Solutions organized the Southwest Regional Stakeholder Engagement Workshop on January 
28, 2017, with over 70 participants at the main location in Tucson, AZ, and dozens of participants 
in Albuquerque, NM, Boulder, CO, Davis, CA, Los Angeles, CA, Reno, NV, and Salt Lake City, UT, 
all connected by video. Participants included scientists and managers. The author team met 
the following day for their only meeting in person. Subsequently, authors held discussions in 
regular teleconferences. Many chapter authors met at the all-author meeting March 26–28, 2018, 
in Bethesda, MD.

Key Message 1 
Water Resources

Water for people and nature in the Southwest has declined during droughts, due in part 
to human-caused climate change (very high confidence). Intensifying droughts (very high 
confidence) and occasional large floods (medium confidence), combined with critical water 
demands from a growing population, deteriorating infrastructure, and groundwater depletion, 
suggest the need for flexible water management techniques that address changing risks over 
time (high confidence), balancing declining supplies with greater demands.

Description of evidence base
Research has found that hotter temperatures can make hydrologic droughts more severe. The 
unprecedented droughts in the Colorado River Basin and California showed that increased 
temperatures from climate change intensified the severity of the drought.13,14,56,59 Climate change, 
more than natural cycles, has reduced snowpack.46,49 Models project more drought under climate 
change,13,56,62 snowpack and streamflow decline in parts of the Southwest, and decreasing surface 
water supply reliability for cities, agriculture, and ecosystems.479

Major uncertainties
Projecting future streamflow and hydrologic characteristics in a basin contains many uncertain-
ties. These differences arise because of uncertainty in temperature and precipitation projections 
due to differences among global climate models (GCMs), uncertainty in regional downscaling, 
uncertainty in hydrological modeling, and differences in emissions, aerosols, and other forcing 
factors. Another important uncertainty is differences in the hemispheric and regional-scale atmo-
spheric circulation patterns produced by different GCMs, which generate different levels of snow 
loss in different model simulations. A key uncertainty is the wide range in projections of future 
precipitation across the Southwest;105 some projections of higher-than-average precipitation in 
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the northern parts of the Southwest could roughly offset declines in warm-season runoff associ-
ated with warming.105

Detection is the finding of statistically significant changes different from natural cycles. Attri-
bution is the analysis of the relative contribution of different causes and whether greenhouse 
gas emissions from human sources outweigh other factors. Attribution of extreme events, such 
as the recent California drought to climate change, is an area of emerging science. On the one 
hand, Seager et al. (2015)58 concluded that the California drought was primarily driven by natural 
precipitation variability. Sea surface temperature anomalies helped set up the high-pressure ridge 
over California that blocked moisture from moving inland. On the other hand, Diffenbaugh et al. 
(2015),56 Williams et al. (2015),14 and Berg and Hall (2017)55 concluded that high temperatures from 
climate change drove record-setting surface soil moisture deficits that made the drought more 
severe than it would have been without climate change. Storage of increased precipitation in soils 
may partially offset increased evaporation, possibly making drought less likely.480

In addition to the uncertainties in regional climate and hydrology projections and attribution 
studies, other uncertainties include potential changes in water management strategies and 
responses to accommodate the new changing baseline. Additionally, external uncertainties can 
impact water use in the region via legal, economic, and institutional options for augmenting 
existing supplies, adding underground storage and recovery infrastructure, and fostering further 
water conservation, changes in unresolved water rights, and changes to local, state, tribal, regional 
and national policies related to the balance of agricultural, ecosystem, and urban water use.

Description of confidence and likelihood
The very high confidence in historical droughts derives from the detection and attribution analyses 
of temperature increases, snow decreases, and soil moisture decreases that have documented 
hydrologic droughts in California and the Colorado River Basin due to anthropogenic climate 
change and the conclusions of the Climate Science Special Report (CSSR), Volume I of the Fourth 
National Climate Assessment.74 The very high confidence in drought projections derives from the 
multitude of analyses projecting drought in the Southwest under a range of emissions scenarios 
and the conclusions of the CSSR.74 Only medium confidence is found for flood projections due to 
lack of consensus in the model projections of precipitation. Increasingly arid conditions and the 
potential for increased water use by people lead to an assessment of high confidence in the need 
for new ways to address increasing risks of water scarcity. The actual frequency and duration of 
water supply disruptions will depend on the preparation of water resource managers with drought 
and flood plans, the flexibility of water resource managers to implement or change those plans 
in response to altered circumstances,481 the availability of funding to make infrastructure more 
resilient, and the magnitude and frequency of climate extremes.
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Key Message 2 
Ecosystems and Ecosystem Services

The integrity of Southwest forests and other ecosystems and their ability to provide natural 
habitat, clean water, and economic livelihoods have declined as a result of recent droughts 
and wildfire due in part to human-caused climate change (high confidence). Greenhouse gas 
emissions reductions, fire management, and other actions can help reduce future vulnerabilities 
of ecosystems and human well-being (high confidence).

Description of evidence base
Scientific research in the Southwest has provided many cases of detection and attribution of 
historical climate change impacts. Detection is the finding of statistically significant changes 
different from natural cycles. Attribution is the analysis of the relative contribution of different 
causes and whether greenhouse gas emissions from human sources outweigh other factors. 
Published field research has detected ecological changes in the Southwest and attributed much of 
the causes of the changes to climate change. Wildfire across the western United States doubled 
from 1984 to 2015, compared to what would have burned without climate change, based on anal-
yses of eight fuel aridity metrics calculated from observed data, historical observed temperature, 
and historical modeled temperature from global climate models.7 The increased heat has intensi-
fied droughts in the Southwest,13,14 reduced snowpack,49,156 and advanced spring warmth.101 These 
changes have dried forests,154,155 driving the wildfire increase.7,153 Tree death across the western 
United States doubled from 1955 to 2007146 likely due to increased heat,21 wildfire,7 and bark beetle 
infestations,148,149 all of which are mainly attributable to climate change7,148,149 more than to other 
factors such as fire exclusion or competition for light and water.146 In the Yosemite National Park 
biome shift,209 the research analyzed the relative contributions of temperature, precipitation, and 
the Pacific Decadal Oscillation. The researchers found that “Minimum temperature was the main 
effect related to accelerating annual branch growth in krummholz whitebark pine and initiation 
of pine invasion into formerly persistent snowfield openings.” In the Yosemite National Park small 
mammal range shift,210 the locations of the monitoring sites allowed relative isolation of climate 
change factors. Moritz et al. (2008)210 state, “The transect spans YNP [Yosemite National Park], a 
protected landscape since 1890, and allowed us to examine long-term responses to climate change 
without confounding effects of land-use change, although at low to mid-elevations there has been 
localized vegetation change relating to seral dynamics, climate change, or both.”

Cutting emissions through energy conservation and renewable energy can reduce ecological 
vulnerabilities. Under high emissions, projected climate change could triple burned area in the 
Sierra Nevada, but under low emissions, fire could increase just slightly.173 Projections of biome 
shifts213,215 and wildlife range shifts217,218,219,220,221 consistently show lower vulnerabilities with lower 
emissions. Extensive research on, and practice of, fire management show that allowing naturally 
ignited fires to burn in wilderness and using low-severity prescribed burns can reduce fuels 
and the risk of high-severity fires under climate change.181,182,183 Proactive use of fire in Yosemite, 
Sequoia, and Kings Canyon National Parks has improved the resilience of giant sequoias and other 
trees to severe fires.187,188,190,191 Numerous research results have identified climate change refugia for 
plants and animals.207,482,483
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Major uncertainties
Because climate model projections often diverge on whether precipitation may increase or 
decrease, two broad types of fire futures152 could be 1) dry-fire future—hotter and drier climate, 
increased fire frequency, fire limited by vegetation, potential biome change of forest to grass-
land after a fire due to low natural regeneration, and high carbon emissions; or 2) intense-fire 
future—hotter and wetter climate, more vegetation, increased fire frequency and intensity, fire 
limited by climate, and higher carbon emissions. These two broad categories each encompass 
a range of fire conditions. On the ground, gradients of temperature, precipitation, and climate 
water deficit (difference between precipitation and actual evapotranspiration) generate gradients 
of fire regimes. Because climate change, vegetation, and ignitions vary across the landscape, 
potential fire frequency shows high spatial variability. Therefore, future fire types could appear in 
patches across the landscape, with different fire future types manifesting themselves in adjacent 
forest patches. Changes in aridity may shift some plant and animal species ranges downslope to 
favorable combinations of available moisture and suitable temperature, rather than upslope.484 
Plants and animals may respond to changing climate, and have been shown to do so, through 
range shifts, phenology shifts, biological evolution, or local extirpation. Thus, no single expected 
response pattern exists.224

Description of confidence and likelihood
Field evidence provides high confidence that human-caused climate change has increased wildfire, 
tree death, and species range shifts. Projections consistently indicate that continued climate 
change under higher emissions could increase the future vulnerability of ecosystems, but that 
reducing emissions and increasing fire management would reduce the vulnerability, providing high 
confidence in positive benefits of these actions. 

Key Message 3 
The Coast

Many coastal resources in the Southwest have been affected by sea level rise, ocean warming, 
and reduced ocean oxygen—all impacts of human-caused climate change (high confidence)—
and ocean acidification resulting from human emissions of carbon dioxide (high confidence). 
Homes and other coastal infrastructure, marine flora and fauna, and people who depend on 
coastal resources face increased risks under continued climate change (high confidence).

Description of evidence base
At the Golden Gate Bridge, San Francisco, sea level rose 9 ± 0.4 inches (22 ± 1 cm) from 1854 to 
2016,236 and at San Diego, 9 ± 0.8 inches (24 ± 2 cm) from 1906 to 2016.237 Analyses of these gauges 
and hundreds around the world show a statistically significant increase in global mean sea lev-
el238,239 due to melting of land ice and expansion of warming water caused by climate change.21,240 
Measurements of sea surface temperatures from buoys off the California coast and around the 
world, combined with remote sensing data, have found warming of the top 75 m of ocean water at 
a rate of 2 ± 0.4°F (1.1 ± 0.2°C) per century from 1971 to 2010,252 caused by climate change.21 Mea-
surements and modeling of ocean acidity found an increase of acidity in the Pacific Ocean off San 
Diego of 25% to 40% (0.1 to 0.15 pH units) since 1750,485 caused by the increase of carbon dioxide 
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in the atmosphere from cars, power plants, deforestation, and other human activities.21 Measure-
ments along the California coast have found ocean acidity during the core upwelling season (April 
to October) increasing by as much as four times (0.7 pH units) to some of the most acidic values in 
the world.274 Griggs et al. (2017)242 project a median sea level rise of 19 inches (49 cm) and a range 
of 12–29 inches (30–73 cm; 67% probability) for the very low scenario (RCP2.6) and a median of 30 
inches (76 cm) and a range of 19–41 inches (49–104 cm; 67% probability) for the higher scenario 
(RCP8.5) by the end of the century. On a similar timescale, Sweet et al. (2017)241 provide one map 
showing sea level rise projections for San Francisco, which shows a 39–47 inch (1–1.2 m) rise for 
the Intermediate scenario (approximately RCP8.5); the range for all of their scenarios is 0.3–2.5 m. 
Jevrejeva et al. (2016)486 project a sea level rise of 73 cm and a range of 12–74 inches (37–187 cm; 5% 
probability) for the higher scenario (RCP8.5) by 2100. 

Major uncertainties
Catastrophic rapid loss of Antarctic and Greenland ice sheets could increase sea level more rapid-
ly. Sea level rise at individual locations depends on the form of the seafloor (bathymetry) and other 
local conditions. Climate change impacts compound overfishing and make fish populations more 
vulnerable. Potential economic changes in California’s coastal and marine-based economies are 
subject to many different environmental and socioeconomic factors.

The full complexity of ecological responses to ocean acidification in combination with other 
stresses in California marine waters is currently unknown. Food supply for marine species,487 
natural variation in resilience,488,489 and other environmental factors can affect the sensitivity of 
organisms to acidic conditions.

Description of confidence and likelihood
Field measurements at numerous locations have detected sea level rise, ocean warming, ocean 
acidification, and ocean hypoxia. Multiple model-based analyses have attributed these changes to 
human-caused climate change, giving high confidence to these impacts of climate change.

Key Message 4 
Indigenous Peoples

Traditional foods, natural resource-based livelihoods, cultural resources, and spiritual well-
being of Indigenous peoples in the Southwest are increasingly affected by drought, wildfire, and 
changing ocean conditions (very likely, high confidence). Because future changes would further 
disrupt the ecosystems on which Indigenous peoples depend (likely, high confidence), tribes 
are implementing adaptation measures and emissions reduction actions (very likely, very high 
confidence).

Description of evidence base
Abundant evidence and strong agreement among sources exist regarding current impacts of 
climate change in the region. Impacts of climate change on the food sources, natural resourc-
es-based livelihoods, cultural resources and practices, and spiritual health and well-being of 
Southwest Indigenous peoples are supported, in part, by evidence of regional temperature 
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increases,23,24 drought,14,56,58,480 declines in snow,46,49,156 and streamflow,11,13,60,110 which have affected 
ecological processes, such as tree death,146 fire occurrence,7,152 and species ranges.211

Impacts specific to Indigenous peoples include: 1) declining surface soil moisture, higher tem-
peratures, and evaporation converge with oak trees’ decreased resilience,285 diminished acorn 
production, and fire and pest threat to reduce the availability and quality of acorns for tribal 
food consumption and cultural purposes;306 and 2) declining vegetation, higher temperatures, 
diminished snow, and soil desiccation have caused dust storms and more mobile dunes on some 
Navajo and Hopi lands, resulting in damaged infrastructure and grazing lands and loss of valued 
native plant habitat.44,301,490 Evidence and agreement among evidence exist on the effects of cli-
mate-related environmental changes on culturally important foods,318,319 practices, and mental and 
spiritual health.42

Multiple projections of climate and hydrological changes show potential future change and dis-
ruption to the ecosystems on which Indigenous peoples depend for their natural resources-based 
livelihoods, health, cultural practices, and traditions. These include projections of increased 
temperatures and heat extremes;24 longer, more severe, and more frequent drought;13,65 expanded 
forest mortality;197,198 increased wildfire;172 and ocean temperature increases, ocean acidification, 
and inundation of coastal areas.242,273

Evidence of specific future disruptions to traditional food sources from forests and oceans mostly 
relies upon inferences, based on projections of changing seasonality and associated phenological 
or ecosystem responses298,307 or potential changes to biophysical factors, such as salinity of fresh-
water lakes, and associated impacts to culturally important fish species.310

Abundant evidence exists of autonomous adaptation strategies, projects, and actions, rooted in 
traditional environmental knowledge and practices or integration of diverse knowledge systems to 
inform ecological management to support adaptation and ecosystem resilience.490,491,492,493

In response to the current and future projected climate changes and ecosystem disruptions, a 
number of tribes in the Southwest are planning and implementing energy efficient and renewable 
energy projects.327,361,494,495 These include installation of or planning for photovoltaic systems,361 
solar arrays, biofuels, microgrids, utility-scale wind, biogas, geothermal heating and cooling 
systems,327 increased building insulation,495 and carbon offsets.334 Several Southwest tribes, such 
as the Ramona Band of Cahuilla and the Santa Ynez Band of Chumash Indians, have established 
or are in the process of establishing energy independence.495 A well-recognized example is that 
of the Blue Lake Rancheria Tribe, in California, which was named a Climate Action Champion in 
2015–2016 for implementing innovative climate actions, such as an all-of-the-above renewable 
strategy of transportation, residential, and municipal renewable energy projects, which includes a 
biogas project. A number of these projects (Ch. 15: Tribes, Figure 15.1) aim to simultaneously meet 
mitigation and adaptation objectives, such as the Yurok Tribe and the Round Valley Indian Tribe, 
which have developed carbon offset projects under California’s cap-and-trade program to support 
tribally led restoration and stewardship.496 

Several tribes in the Southwest are developing climate change adaptation plans to address the 
current climate-related impacts and prepare for future projected climate changes. The Santa Ynez 
Band of Chumash Indians, which is working towards an integrated energy and climate action plan, 



25 | Southwest - Traceable Accounts

1139 Fourth National Climate AssessmentU.S. Global Change Research Program 

the Yurok Tribe, the Gila River Indian Community, and the Tohono O’odham Nation are among 
the first tribes in the region to develop climate adaptation and resilience plans, which reflects 
a nationwide gap or need for further tribal adaptation plan development. Lack of capacity and 
funds has hindered progress in moving from planning to implementation, which is similar to the 
situation for U.S. cities.497

Major uncertainties
Uncertainties in the climate and hydrologic drivers of regional changes affecting Indigenous 
peoples in the Southwest include 1) differences in projections from multiple GCMs and associated 
uncertainties related to regional downscaling methods, 2) the way snow is treated in regional 
modeling,498 3) variability in projections of extreme precipitation, and, in particular, 4) uncertain-
ties in summer and fall precipitation projections for the region.88 Additional uncertainties exist 
in sea level rise projections242 and, for the California coast, ocean process model projections of 
acidification, deoxygenation, and warming coastal zone temperatures.499 For the most part, Native 
lands lack instrumental monitoring for weather and climate, which is a barrier for long-term 
climate-related planning.493

Complexities arising from the multiple factors affecting ecosystem processes, including tree 
mortality and fire, often preclude formal detection and attribution studies. Much evidence and 
agreement among evidence exist regarding the role of hotter temperatures in fire and tree mor-
tality.7,146 Detection and attribution studies seldom focus explicitly on tribal lands.

Other uncertainties relate to estimating future vulnerabilities and impacts, which depend, in part, 
on adjudication of unresolved water rights and the potential development of local, state, regional, 
tribal, and national policies that may promote or inhibit the development and deployment of adap-
tation and mitigation strategies. 

Description of confidence and likelihood
The documented human-caused increase in temperature is a key driver of regional impacts to 
snow, soil moisture, forests, and wildfire, which affect Indigenous peoples, other frontline commu-
nities, and all of civil society. Case study evidence, using Indigenous and Western scientific obser-
vations, oral histories, traditional knowledge and wisdom (e.g., Ferguson et al. 2016493), suggests 
that climate change is affecting the health, livelihoods, natural and cultural resources, practices, 
and spiritual well-being of Indigenous communities and peoples in the Southwest (e.g., Redsteer 
et al. 2011, 2013; Wotkyns 2011; Cozzetto et al. 2013; Gautam et al. 2013; Navajo Nation Department 
of Fish and Wildlife 2013; Nania and Cozzetto et al. 2014; Sloan and Hostler 2014; Redsteer and 
Fordham 201744,302,305,307,310,311,490,500,501). Abundant evidence gives high confidence that hotter tempera-
tures, tree mortality, and increased wildfire and drought, due to climate change, would disrupt 
the ecosystems on which Indigenous people depend; the likelihood of these impacts affecting 
individual tribes will depend in large part on the non-climatic stresses (such as historical legacies 
and resource management practices) interacting with the climatic stresses. Very high confidence 
exists that tribes are developing adaptation measures and emissions reductions to address current 
and future climate change, based on abundant ongoing initiatives and associated documentation.
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Key Message 5 
Energy

The ability of hydropower and fossil fuel electricity generation to meet growing energy use in the Southwest 
is decreasing as a result of drought and rising temperatures (very likely, very high confidence). Many 
renewable energy sources offer increased electricity reliability, lower water intensity of energy generation, 
reduced greenhouse gas emissions, and new economic opportunities (likely, high confidence). 

Description of evidence base
Numerous studies link Southwest hydrologic drought with a decline in renewable hydroelectricity 
generation in the region. Hydroelectric generation depends on runoff to fill reservoirs to max-
imize generation capacity.336,337 During the California drought, which was intensified by climate 
change,14,56 hydroelectric generation in California fell from 43 trillion watt-hours (TWh) in 2011 
before the drought to 14 TWh in 2015 during the drought.335 Climate change also reduced the 
snowpack46,47,48,49 and river runoff on which hydroelectric generation depends.336,337

Similarly, low reservoir levels in Lake Mead—which is formed by damming the Colorado River—
driven by reduced Colorado River runoff13,59 can reduce the efficiency and production levels of 
hydropower at Hoover Dam.

Fossil fuel generation efficiency depends on the temperature and availability of the external 
cooling water. Warming could reduce energy efficiency up to 15% across the Southwest by 2100.91 
Higher temperatures also increase electric resistance in transmission lines, causing transmis-
sion losses of 7% under higher emissions.344 Replacing fossil fuel generation with solar power 
renewables reduces greenhouse gas emissions and water use per unit of electricity generated.90 
This supports the assertion that increasing solar energy generation in the Southwest could meet 
the energy demand no longer being met by hydropower and fossil fuel as well as the expected 
increase in energy use in the future.

Solar energy production is also an economic opportunity for the region. The energy potential for 
renewable energy is estimated to range from one-third to over ten times 2013 generation levels 
from all sources.502 The lower range assumes capacity requirements remain at 2013 levels,502 but 
recent data show an upward trend in Southwest energy use.89 

The high potential for solar energy projects in the Southwest and the extent of federally owned 
land in the Southwest (well over half the total surface area for the six-state region) prompted the 
Bureau of Land Management (BLM) and the U.S. Department of Energy to conduct a programmatic 
environmental impact analysis of a new Solar Energy Program to further support utility-scale 
solar energy development on BLM-administered lands.502,503 This potential capacity, combined 
with the increasingly competitive cost of solar and wind,504 presents economic opportunities for 
the region and an opportunity to reduce overall greenhouse gas emissions.

Solar and renewable energy jobs are increasing. The solar workforce increased 25% in 2016, while 
wind employment increased 32%.505 Jobs in low-carbon-emission generation systems, including 
renewables, nuclear, and advanced low-emission natural gas, comprise 45% of all the jobs in the 
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electric power generation and fuels technologies.505 Growing Southwest energy use, competitive 
prices for renewables, and the renewable energy potential of the Southwest favor the replacement 
of fossil-fuel-generated energy by renewable solar and wind energy. 

Major uncertainties
Climate model projections of the future diverge on whether precipitation may increase or 
decrease for much of the region, so hydroelectric power changes may exhibit spatial variation. 
The amount of runoff is a key factor driving the generation potential for hydroelectric power. A 
key uncertainty is how much hydroelectricity generation will decline. Some projections of  
higher-than-average precipitation in the northern parts of the Southwest could roughly offset 
declines in warm-season runoff associated with warming.105  

Energy demand in the Southwest is increasing, but the rate of growth is uncertain.506 Changes in 
energy market prices cause future uncertainty in the future mix of energy sources for the South-
west.502 The low cost of natural gas and the competitive cost of solar and wind renewables make 
it somewhat certain the proportion of the energy generated from these sources will continue to 
increase and offset reductions in traditional fossil-fuel-generated energy, reducing overall green-
house gas emissions.504  Renewable energy job growth potential is also uncertain and depends on 
the factors mentioned above.505 

Additionally, daily to multiyear variation in coastal cloud cover affects solar electricity generation 
potential along the California coast.507,508,509,510

Description of confidence and likelihood
Hydrological drought in California reduced hydroelectric generation335 and fossil fuel electricity 
generation efficiencies. Drought and rising temperatures under climate change can reduce the 
ability of hydropower and fossil fuel electricity generation to meet growing energy use in the 
Southwest (very likely, very high confidence). Renewable solar and wind energy offers increased 
electricity reliability, lower water intensity for energy generation, reduced greenhouse gas emis-
sions, and new economic opportunities (likely, high confidence).

Key Message 6 
Food

Food production in the Southwest is vulnerable to water shortages (medium confidence). 
Increased drought, heat waves, and reduction of winter chill hours can harm crops (medium 
confidence) and livestock (high confidence); exacerbate competition for water among 
agriculture, energy generation, and municipal uses (medium confidence); and increase future 
food insecurity (medium confidence).

Description of evidence base
Climate change has altered climate factors fundamental to food production and rural livelihoods 
in the Southwest. Abundant evidence and good agreement in evidence exist regarding regionally 
increasing temperatures, reduced soil moisture, and effects on regional snowpack and surface 
water sources.13,23,67,74,79 The heat of climate change has intensified severe droughts in California14,56 
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and the Colorado River Basin.13 Hotter temperatures and aridity in the Southwest affected agricul-
tural productivity from 1981 to 2010.366

Elevated temperatures can be associated with failure of some crops, such as warm-season veg-
etable crops, and reduced yields and/or quality in others.374 Temperatures in California, Nevada, 
and Arizona are already at the upper threshold for corn372 and rice.373 While crops grown in some 
areas might not be viable under hotter conditions, other crops such as olives, cotton, kiwi, and 
oranges may replace them.375 In the Southwest, climate change may cause a northward shift in 
crop production, potentially displacing existing growers and affecting rural communities.376 Qual-
ity of specialty crops, both nutritive and sensory, declines because of increased temperatures and 
other changes associated with a changing climate,393,511 which is particularly important in a region 
producing a majority of the Nation’s specialty crops. Decreases in winter chill hours may reduce 
fruit and tree nut yields, though the magnitude may vary considerably.380,381

High ambient temperatures associated with climate change could decrease production of 
rangeland vegetation across the Southwest,384 reducing available forage for livestock. Ranching 
enterprises across the region have vastly different characteristics that will influence their adap-
tive capacities.390

Local-scale impacts can vary considerably across the region depending upon surface and ground-
water availability. Drought causes altered water management, with heavy reliance on a limited 
groundwater to sustain regional food production.130 Despite severe localized impacts, losses in 
total agricultural revenue are buffered by groundwater reliance to offset surface water shortage.369 
Parts of the Southwest have exhausted sustainable use of groundwater resources. When surface 
water supplies are reduced, farmers shift to increased groundwater pumping, even when pumping 
raises production costs371—declining groundwater tables significantly increase pumping costs and 
require drilling of deeper wells.130 Continued climate change may reduce aquifer recharge in the 
southern part of the region 10%–20%.370 Climate change is projected to cause longer and more 
severe drought periods that will intensify the uncertainty associated with Southwest water supply 
and demand. Water-intensive forage crops and the livestock industry are especially vulnerable to 
climate-related water shortages.15

Major uncertainties
The impacts of climate change on food production depend upon microclimatology and local-scale 
environmental, social, and economic resources. While the scientific community relies upon com-
puter models and generalized information to project likely future conditions, unforeseen conse-
quences of warming temperatures, such as those related to pests, pollinators, and pathogens, may 
be more detrimental than some of the well-documented projections, such as temperature impacts 
on reduced yields. The effects of increased precipitation supplying the deep root zone may some-
what offset the increase in temperature, so agricultural drought may be less frequent for trees and 
other crops dependent on deeper soil moisture.480 Scientists are producing more drought- and 
heat-tolerant cultivars, which may be suitable to production in the projected warmer and more 
arid climate of the Southwest.

Since food security relies on complex national and international trade networks, how regional 
climate change may affect local food security is uncertain. Many adaptation options, such as using 
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alternate breeds, crops, planting and harvest dates, and new (sometimes untested) chemicals, may 
work in certain situations but not others. Thus, predicting impacts to food production in a hotter/
drier land is likely to vary by crop and location, necessitating flexibility and adaptive management. 
Of paramount uncertainty is the impact of water shortage on regional food production as other 
uses may outcompete producers for limited supplies.

Description of confidence and likelihood
Since the availability of affordable food around the world depends upon complex trade and trans-
portation networks, the effects of climate change on Southwest food availability, production, and 
affordability remain highly complex and thereby uncertain and classified with medium confidence. 
While the viability of rural livelihoods is vulnerable to water shortages and other climate-related 
risks, rural livelihoods may be supplemented by other nonagricultural income, such as recreation 
and hunting. The viability of rural livelihoods is highly complex, and risk is, therefore, classified 
with medium confidence. Crop impacts related to hotter and drier conditions and reduced winter 
chill periods, caused by climate change, are classified with medium confidence. Not all crops are 
directly harmed by warming temperatures, and the simulation impacts of reduced chilling hours 
can produce a fairly wide range of results depending upon model assumptions. Hotter and drier 
conditions can directly harm livestock via reduced forage quantity and quality and exposure to 
higher temperatures, conferring a high confidence classification. Projections of future drought 
and water scarcity portend increased competition for water from other beneficial uses with 
medium confidence.

Key Message 7 
Human Health

Heat-associated deaths and illnesses, vulnerabilities to chronic disease, and other health risks 
to people in the Southwest result from increases in extreme heat, poor air quality, and conditions 
that foster pathogen growth and spread (high confidence). Improving public health systems, 
community infrastructure, and personal health can reduce serious health risks under future 
climate change (medium confidence).

Description of evidence base
Strong evidence and good agreement among multiple sources and lines of evidence exist, indicat-
ing that the Southwest regional temperature may increase, snowpack may decline, soil moisture 
may decrease, and drought may be prolonged.14,23,24,56,58,62,68,74,480

Exposure to hotter temperatures and extreme heat events, partly a manifestation of human-
caused climate change, already led to heat-associated deaths and illnesses in heat waves in Arizo-
na and California in the early and mid-2000s.398,399,400,401,402,406,444,450,512

Good agreement exists among models that most of the Southwest may become more arid, due to 
the effect of increasing temperatures on snow, evaporation, and soil moisture.58,65,70,80 Projections 
also indicate that flood-causing atmospheric rivers may become more moist, frequent, and 
intense84,85,86 and that intense daily precipitation may increase in frequency.88,513 Models project 
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declines in future runoff of key Southwest rivers, such as the Colorado, due chiefly to the effects 
of increased temperature on soil moisture and snowpack.13,71,110

Strong evidence exists of the effects of extreme heat on public health in the region (e.g., Knowlton 
et al. 2009, Oleson et al. 2015, Wilhelmi et al. 2004400,514,515) and for reasonable projections of future 
deaths and costs of lost labor productivity due to enhanced future episodes of extreme heat. 
Factors that predict a person will be at increased risk include being confined to bed, not leaving 
home daily, and being unable to care for oneself;516 various general indicators of being socially 
isolated (such as living alone, the presence of or frequency of social contacts, or being isolated lin-
guistically);516,517,518,519 and persons who are socioeconomically disadvantaged.516,517,518,519 Dehydration 
in general and dehydration associated with medications (neurological and non-neurological) that 
impair thermoregulation or thirst regulation were also associated with elevated risk of mortality 
during the 2003 heat wave in France.520 The role of prescription medications in altering the risk for 
heat-associated illness or death is of growing interest and concern.521 This issue is more important 
as chronic diseases become more prevalent and more people take prescription drugs.

Given the proportion of the U.S. population in the Southwest, a disproportionate number of West 
Nile virus, plague, hantavirus pulmonary syndrome, and Valley fever cases occur in the region.158,420 
West Nile virus transmission is projected to shift to the north under climate change, and areas 
where the mosquitoes that carry this virus are present may see increased abundances.441,442,443 
The mosquito species that carry Zika and chikungunya are established in parts of the region, 
but mosquito-borne transmission has only been observed in Puerto Rico, the U.S. Virgin Islands, 
Florida, and Texas (Ch. 14: Human Health). 

Overall, the Southwest is ill-prepared to absorb the additional patient load that would accom-
pany climate change associated disasters.448 The American College of Emergency Physicians 
assigned an overall emergency care grade of C or C+ to three of the six Southwest states, with 
the others receiving poorer grades, and four of the six states received an F grade for access to 
emergency care.448

Major uncertainties
Uncertainties in the climate and hydrologic drivers of regional changes affecting public health 
include 1) differences in projections from multiple GCMs and associated uncertainties related to 
regional downscaling methods, 2) variability in projections of extreme precipitation, 3) uncertain-
ties in summer and fall precipitation projections for the region,88 and 4) uncertainties in models 
that project occurrence and levels of climate-sensitive exposures that are known to impact 
public health, such as local and regional ozone air pollution, particulate air pollution (for example, 
increases from wildfire emissions or reductions from advancements in vehicle emissions control 
technology), or occurrence and exposure to toxins or pathogens.

Studies of non-fatal illnesses using healthcare services data can yield critical insights different 
from those one can derive from death data. Most studies of heat impacts on health have focused 
on deaths rather than nonfatal illnesses. This is primarily because hospitalization and emergency 
department data, compared with death certificate data, are not as available or uniform across 
locations, and when they are available it can be difficult to access them due to concerns for 
patient confidentiality. Ongoing enhancements to electronic medical records technology and 
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adoption across the healthcare services sector will potentially address those limitations in the 
near future and will provide invaluable data resources to identify and adopt prevention strategies 
that reduce the vulnerability of patients and populations to the adverse effects of climate- 
sensitive exposures.

More recent work focusing on the more deadly neuroinvasive West Nile virus indicates that 
regionally, the central and southern parts of the country may experience increasing cost from this 
vector-borne disease in the future.178,440 The lack of a statistical association between temperature 
and West Nile virus diagnoses in the Southwest may be because extreme temperatures in some 
locations rise above the survival thresholds for vectors, thereby reducing mosquito abundance522,523 
and disease transmission.419 Additionally, because the data for diseases like Valley fever are limited 
to cases, rather than exposures, the link to climate change is not clear.435,436

While improvements to individual health and to clinical and community infrastructure are highly 
likely to 1) improve physical capacity to adapt to climate effects, 2) diminish the overall impacts on 
population health, and 3) increase societal capacity to respond quickly to dampen the effects of 
long-term and emergency responses,446,447,524 other factors also influence adaptive capacity, adding 
considerable uncertainty. For example, many factors influence the observed number of West Nile 
virus cases including available habitat, human prevention and control efforts, and recent history of 
cases in a given area.442,525,526,527

Description of confidence and likelihood
Evaluation of confidence levels for the assessment of the type and magnitude of observed or 
projected public health and clinical impacts was based on the strength of evidence underlying the 
answers to three primary questions:

1.	 What characteristics of the region’s historical climate and weather patterns translate directly 
(for example, extreme heat) or indirectly (for example, higher temperatures fostering ozone 
formation or the growth and spread of pathogens and vectors) to exposures associated with 
observed human health risks that are unique to or overrepresented in the Southwest? 

2.	 Does recent historical evidence indicate that climate and weather patterns have changed, 
or do climate models project changes over the 21st century, thereby increasing the risk of 
human exposures and health impacts evaluated under question 1?

3.	 What are the determinants of individual and population vulnerability that increase or 
decrease the risk of an adverse health outcome or affect adaptive capacity? These include 
factors that affect a) biological susceptibility, b) physical environment and exposure charac-
teristics, and c) social, behavioral, or economic factors.

To the extent possible, the evaluation recognized and accounted for the complex interconnections 
among these factors, the fact that their relative importance may differ across geographic and 
temporal scales, and the combined uncertainties of evidence from multiple disciplines (for exam-
ple, health sciences, climatology, and social or behavioral sciences) that can vary substantially. 

The information revealed by answering those questions, gives high confidence that extreme 
heat will be the dominant driver of exposures that pose the greatest health risks in the 
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Southwest—including direct effects of heat on individuals and indirect effects of heat on air pol-
lution levels. Due to the uncertainties related to the frequency and intensity of human exposures 
and related to impacts on essential ecosystem services under projected climate change, the 
statement “Improving public health systems, community infrastructure, and personal health can 
reduce serious health risks under future climate change” is made with medium confidence. Never-
theless, clinical and public health policy effectiveness assessments show that such improvements 
can reduce the burden of disease and health risks associated with environmental exposures.
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