Mission, Principles and Elements of a Green Real Deal

CA Technology Pathways to Meet 2030 Targets

Focusing the Energy Innovation Portfolio on Breakthrough Potential

- Federal and private clean energy innovation are complementary
- Key platform technologies hold great potential to unlock significant clean energy innovation
- A four-step process is used to identify breakthrough technologies that have the potential to aid government, industry and thought leaders in efforts to transform the energy sector

Analyze key drivers of clean energy technology breakthroughs

- Digitalization, big data & smart systems
- The difficult to decarbonize sectors
- Integration of platform technologies

Develop selection criteria for breakthrough technologies

Technical merit Market viability Compatibility Consumer value

- 4	

Identify the universe of emerging energy technologies that have critical features across various timescales

Identify innovation areas with significant breakthrough potential

Critical innovation areas identified are:

- Storage and battery technologies
- Advanced nuclear reactors
- Technology applications of industry and buildings as sectors that are difficult to decarbonize including hydrogen, advanced manufacturing technologies; and building technologies
- Systems: electric grid modernization and smart cities
- Deep decarbonization/large-scale carbon management; carbon capture, use and storage at scale; sunlight to fuels; enhanced

biological and oceans sequestration

Systems and supply chains

Select Pathways for Carbon Dioxide Removal, Conversion, and Disposition from Dilute CO₂ Sources

CAPTURE SOURCES

CAPTURE METHOD

Natural Forestry & land management Crops & soil management Coastal ecosystems (blue carbon)

In situ carbon mineralization

CONVERSION & DISPOSITION

Overview of CDR RD&D Initiative

Goal Comprehensive 10-year RD&D initiative focused on multiple CDR technology pathways Capable of gigaton-scale deployment, at technology-specific cost targets, with minimal ecological impact

Organization Federal Committee on Large-Scale Carbon Management

12-agency, whole-of-government effort involving planning, budgeting, and coordination

Proposed\$10.7B over 10 years, with \$325M in the first full yearFundingFunding distributed among 10 agencies in six separate appropriations bills

Energy Frontier Research Centers

The EFRCs harness the most basic and advanced discovery research in a concerted effort to establish the scientific foundation for a fundamentally new U.S. energy economy.

Advanced Research Projects Agency-Energy (ARPA-E)

ARPA-E focuses on promoting transformational technologies with high risk, high payoff characteristics that may fall outside the path of conventional technology roadmaps

U.S. National Academy of Sciences recommended a funding path to an annual budget of \$1 billion for ARPA-E

As of March 2019

DOE Loan Programs Office Portfolio: Diverse, Regional, High Impact, Late-Stage Innovation

Massachusetts (1): 1366 Technologies (Solar manufacturing/

New York (2): Ford (Advanced vehicles manufacturing/\$5.9 B); Stephentown Spindle (Storage & Transmis-

Delaware (1): Fisker (Advanced vehicles manufacturing/\$529 M)

(Advanced vehicles manufacturing/\$5.9 B)

Tennessee (3): Alcoa Inc. (Advanced vehicles manufacturing/\$259 M); Nissan (Advanced vehicles manufacturing/

Georgia (1): Vogtle (Advanced nuclear/\$3.4 B GPC, \$3.1 B OPC,

BACKUP

Science, Data Sending Alarms, Urgent Action Needed

- 9 of 10 warmest years on record between 2005-2016
- Arctic warming 2-3x faster than global average; its sea ice is declining at a rate of 12.8 percent per decade
- Sea levels (global average) have risen 7-8 inches since 1900; could reach 1-4 feet by 2100
- In May 2019, atmospheric CO₂ concentration reached 415 ppm, the highest level in at least 800,000 yrs.
- At the current rate of warming of 0.2°C per decade, the planet will likely reach the lower target of 1.5°C by as early as 2030

- According to the IPCC, "…On land, impacts on biodiversity and ecosystems, including species loss and extinction, are projected to be lower at 1.5°C of global warming compared to 2°C"
- An increase of 2° C in global average temperatures means that 37% of the world's population will experience extreme heat, compared to 14% at 1.5°
- As of 2018, 2/3rds of the major emitting countries were not on track to meet their targets
- In 2018, US CO₂ emissions from fossil fuel combustion rose 2.7%

Challenges with Integrating Intermittent Renewables

Over the course of a year large-scale dependence on both wind and solar will result in significant periods requiring very large-scale back-up options

Source: CAISO data, EFI analysis

Hourly trends in solar and wind capacity factors in CA for 2017 aligned to normalized variation in hourly load relative to peak daily load

Seasonal Variation in Solar & Wind

Source: EFI, compiled using data from CAISO

Challenges with Integrating Intermittent Renewables

CA Breakthrough Technology Portfolio, Post-2030

ENERGY FUTURES

Lithium, Cobalt, Nickel Production/Reserves

2017

215,000

366,000

214,000

146,000

2,160,000

48,400

Mine production

V

Mine production

2018^e

6,200

600

800

500

1.600

885.000

2018°

4.700

3,800

3,100

4,900

3,500

2,300

3,200

4,600

5,900

2,200

7,000

2018^e

19,000

80,000

170,000

160,000

110,000

43,000

53.000

46,000

49,000

39,000

560,000

210,000

340,000

210.000

180,000

2,300,000

44,000

140,000

Mine production

90,000

500

51.000

16.000

8,000

w

	United States	w
	Argentina	5,700
	Australia	40,000
	Brazil	200
Meeting the Clean	Chile	14,200
	China	6,800
Energy Ministerial's	Portugal	800
target of 20 million	Namibia	_
target of 50 minion	Zimbabwe	800
electric vehicle	World total (rounded)	⁸ 69,000
	Coholt Droduction / Pocornec (mathematic	
sales by 2030	Copail Production/Reserves (metric tons)	Mine
, 	United States	640
would require 314	Australia	5,030
kt/wr of coholt	Canada	3,870
KL/ YI. OI CODAIL,	Congo (Kinshasa)	73,000
almost three times	Cuba	5,000
	Madagascar	3,500
the 2017 level for	Papua New Guinea	3,310
	Philippines	4,600
all uses. At those	South Africa	2,300
	Other countries	7,650
rates, reserves	World total (rounded)	120,000
would last 23 years	Nickel (metric tons)	Min
		2017
	Australia	179,000
Carbonbrieforg	Brazil	78,600
Carbonbriej.org	Canada China	103.000
	Colombia	45,500
	Finland	52,800 34,600
	Guatemala	53,700
	Indonesia	345,000
	Madagascar New Caledonia ¹⁰	41,700

Philippines

South Africa

Other countries

World total (rounded)

Russia

Lithium Production/Reserves (metric tons)

Reserves ⁶	Teele/e globel
	lesia's global
35,000	supply manager for
2,000,000	
72,700,000	battery metals, told
54,000	
8,000,000	a closed-door
1,000,000	Washington
60,000	vvasinington
NA 70.000	conference of
14,000,000	miners, regulators
Reserves ⁷	and lawmakers that
38,000	
⁸ 1,200,000	the automaker sees
250,000	a chartage of kov
3,400,000	a shortage of key
500,000	FV minerals coming
140,000	
56,000	in the near
280,000	fortune – Tealandill
24,000	tuture lesia wili
640,000	continue to focus
6,900,000	
Reserves ⁸	more on nickel,
110,000	nart of a plan by
11,000,000	
2,700,000	Chief Executive
440,000	
5,500,000	Elon Musk to use
1,800,000	
21,000,000	less cobait in
4 800 000	battery cathodes.
7,600,000	
3,700,000	Electrek, May, 2019
89,000,000	15

Source: USGS, 2019