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Thank you Chairman Bucshon, Ranking Member Lipinski, and other members of the 
Subcommittee for the opportunity to speak with you today. 
 
I am Victoria Stodden, assistant professor of statistics at Columbia University. My 
research is on reproducibility of results in computational science. Reproducibility is a 
new challenge, brought about by advances in scientific research capability due to 
immense changes in technology over the last two decades. It is widely recognized as a 
defining hallmark of science and directly impacts the transparency and reliability of 
findings, and is taken very seriously by the scientific community. 
 
Federally Funded Digital Archives are Necessary for Scientific Integrity and 
Accelerate Scientific Discovery 
 
Massive computation has begun a transformation of the scientific enterprise that will 
finish with computation absolutely central to the scientific method. From the ability to 
capture data, methods, create simulations, and provide dissemination mechanisms, 
science has gone digital. We need federally funded archives for the scientific data and 
software associated with research publications. Convenient access to data and software 
is a necessary step in enabling reproducibility in computational science, and 
preservation ensures reproducibility persists. Because of their broad impact, the federal 
agencies that fund scientific research play a key role in facilitating the dissemination and 
archiving of the data and software associated with scientific findings that scientists or 
universities cannot play on their own. Data archives that are discipline specific and 
directly funded are necessary for the validation of published results, and permits others 
to use these resources to accelerate economic and scientific competitiveness. Openly 
available data and methods will maximize the downstream discoveries that could be 
made the information contain in the data and the know-how of methods contained in the 
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code. This availability means curious STEM students, for example, can try their hand at 
replicating published results from the data and software, and learn about the science 
(and perhaps contribute further discoveries!). 
 
For example other countries, such as Sweden, the U.K., the Netherlands, and 
Germany, are steps ahead in creating a long-term data archive for the social sciences 
with a standing similar to that of a national archive. This is a solution to the public good 
problem of access to scientific data and code. I believe separate funding is required to 
establish such archives in America, since using research grant funds is unpredictable 
and unreliable. Funding agencies need to treat this as a mandate and plan to protect 
data and code availability for 25 years. Archived data and code should be linked with all 
publications that use either of them, in order for reproducibility to be effective. 
 
Background on the Reproducibility Issue 
 
First, I will provide some background on the reproducibility issue. Recent technological 
advances have accelerated scientific research in three principal ways: increasing in our 
ability to collect and store vast amounts of data; increasing the computer power needed 
to analyze these data and perform computationally intensive science; and providing a 
mechanism for the rapid transmission of digital scholarly objects (such as research 
articles, data, or computer software) via the Internet. These three changes have 
revolutionized scientific research and computation is emerging as absolutely central to 
the scientific enterprise. In keeping with longstanding scientific norms, the scientific 
community has responded to these technological changes by calling for modifications of 
the standards of scientific communication: making available the computational aspects 
of the research – the code and data – that generated published scientific findings at the 
time of publication.1 This is commonly called the “Reproducible Research Movement.” 
 
The communication of scientific research was established around the goal of 
reproducibility – providing sufficient information to other researchers so that they are 
able to verify the new results. This is still the overarching goal of scientific publishing, 
but these technological changes are requiring us to update our standards of 
communication. Computational steps are typically too complex and numerous to be 
described in the traditional scientific publication. Researchers will need to provide both 
the data and the code with the computational steps as a routine part of scientific 
publishing. In computational science today, the published research article is rarely 
sufficient for the findings to be validated.  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  The	  Reproducible	  Research	  movement:	  see	  e.g.	  "Reproducible	  Research:	  Addressing	  the	  Need	  for	  Data	  and	  Code	  
Sharing	  in	  Computational	  Science,"	  with	  Yale	  Roundtable	  Participants,	  Computing	  in	  Science	  and	  Engineering,	  12(5)	  
8-‐13,	  Sep./Oct.	  2010	  (attached);	  and	  D.	  Donoho	  et	  al.	  “Reproducible	  Research	  in	  Computational	  Harmonic	  
Analysis,”	  Computing	  in	  Science	  and	  Engineering,	  11(1)	  8-‐18,	  Jan	  2009.	  
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This is not to say published results are necessarily wrong, or that there is a lack of 
integrity on the part of scientists. What is happening is that access to the data and 
software is needed in order to validate and understand new scientific claims. In short, 
scientific communication needs to catch up with the recent technological changes in 
scientific research and this is not something any single researcher can do on their own. 
The scientific community is responding with piecemeal independent efforts however, 
including sessions on reproducibility at major scientific conferences and meetings, 
dedicated workshops and journal issues (see appendices), standards on data and code 
access requirements by journals, subject specific repositories with data deposit 
requirements, independently releasing data and code, and the development of software 
research tools to help with data and code sharing. These efforts, while immensely 
laudable since they do not result in direct career advancement or reward for the 
scientists responsible, are minuscule and largely token compared to the scale of change 
that needs to happen. Science is a peer-guided endeavor and these are the main 
options scientists have for creating change. A larger effort is needed and this is where 
the federal funding agencies come in. 
 
The scientific community has been rocked by episodes like the case at Duke University 
where published results about a new statistical medical assessment test could not be 
verified prior to the start of clinical trials. In an embarrassing scandal, the trials were 
eventually cancelled after the underlying research was found contain errors. Many in the 
scientific community feel that these errors would have been caught much earlier, well 
before clinical trials had started, if the associated data and software were made 
routinely available when computational results are published. 
 
Some scientists feel strongly enough about the importance of reproducible research 
they have self archived their data and code. For example, David Donoho’s Wavelab 
package (http://www-stat.stanford.edu/~wavelab), my Sparselab package 
(http://sparselab.stanford.edu), and the papers contained in 
http://www.RunMyCode.org. The event at Duke University prompted the Institute of 
Medicine to produce a report requiring data and software submission, for validation and 
reproducibility purposes, to be submitted to the FDA prior to clinical trial approval. Their 
report, “Evolution of Translational Omics: Lessons Learned and the Path Forward,” was 
released on March 23, 2012 at http://www.iom.edu/Reports/2012/Evolution-of-
Translational-Omics.aspx . These and other efforts, while laudable, cannot come close 
to enabling reproducibility for all computational findings that are published today and 
going forwards. A funding agency level solution is needed. 
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Open Data and Software Accelerate Scientific Discovery, Innovation, and 
Economic Growth 
 
For an individual researcher, making data and software available takes time. It takes 
time for professionals to archive and curate these objects, and to ensure they are 
properly linked to the published results. I believe that these efforts are both essential to 
the integrity of the scholarly record and vastly more efficient over the long run than the 
current method of publication (omitting the associated research data and code) since it 
is then much easier to ensure the accuracy of published scientific findings. 
 
Making research data and software conveniently available also has valuable corollary 
effects beyond validating the original associated published results. Other researchers 
can use them for new research, linking datasets and augmenting results in other areas, 
or applying the software and methods to new research applications. These powerful 
benefits will accelerate scientific discovery. Benefits can also accrue to private industry. 
Again, data and software availability permit business to apply these methods to their 
own research problems, link with their own datasets, and accelerate innovation and 
economic growth. 
 
Scientific research is not intended to produce viable market-ready products. It produces 
scientific knowledge about our world. When the data and code are made conveniently 
available this opens entirely new possibilities for others to commercialize and ready 
these discoveries for market. The discoveries and technologies are made openly 
available as part of publication. Raw facts are not subject to copyright (499 US 340 
(1991)) and data can be readily open to catalyze innovation across scientific disciplines 
and across industry. 
 
American competitiveness can only be increased as we increase the integrity of our 
scholarly record, and as we make access to scientific innovations, data, and their 
implementation broadly available to other researchers and to industry. 
 
The Federal Agencies are Vital to Ensuring Reproducible Computational Science 
 
Since January 18 of 2011 the National Science Foundation has required a two page 
“Data Management Plan” be submitted with every grant application. The Plan requested 
that the applicant explain how “the proposal will conform to NSF policy on the 
dissemination and sharing of research results.” The NSF policy referred to follows, “NSF 
... expects investigators to share with other researchers, at no more than incremental 
cost and within a reasonable time, the data, samples, physical collections and other 
supporting materials created or gathered in the course of the work. It also encourages 
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grantees to share software and inventions or otherwise act to make the innovations they 
embody widely useful and usable.” The National Institutes for Health has a similar 
policy, “We believe that data sharing is essential for expedited translation of research 
results into knowledge, products, and procedures to improve human health. The NIH 
endorses the sharing of final research data to serve these and other important scientific 
goals. The NIH expects and supports the timely release and sharing of final research 
data from NIH-supported studies for use by other researchers” (NIH grants greater than 
$500,000 must include a data sharing plan). 
 
If enforced, these guidelines would help shift computational research toward 
reproducibility. These guidelines are generally not enforced however, and I believe this 
is for two reasons. One, the guidelines are not well defined in terms of what constitutes 
data and how it should be shared. Two, sharing is costly and the funding agency should 
provide mechanisms and appropriate repositories for data and code deposit. At the 
moment, these guidelines seem like an unfunded mandate and this should change. 
Federal agencies should be provided with the funds to support the open availability of 
data and code. This should take the form of repositories maintained by the funding 
agencies that can curate, preserve, and make these digital scholarly objects openly 
available. 
 
The OSTP Executive Memorandum Reinforces Efforts Towards Reproducible 
Computational Research 
 
On February 22, 2013, the Office of Science and Technology Policy in the Whitehouse 
released an executive memorandum giving federal agencies with more than $100 
million in research funding six months to devise plans to facilitate open access to 
scientific publications and scientific data. Data is defined as “digital recorded factual 
material commonly accepted in the scientific community as necessary to validate 
research findings including data sets used to support scholarly publications.” Software is 
equally as important as data in validating computational science and I hope the 
committee understands “data” as referred to in the Executive Memorandum as including 
both data and software. 
 
Standards for data sharing will vary by discipline and by research problem. Some areas, 
especially those that tend to make big capital investments in data collection devices 
such as telescopes or genome sequencing machines, are relatively advanced in terms 
of data sharing. Others have almost no experience with the issue. Since software is 
typically generated by the researchers themselves, organized methods for software 
sharing have not come into prominence. The different types of research funded by 
federal agencies may require different sharing requirements. What is clear is that they 
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will need funds and resources to support the need for open data and software. The 
costs of data sharing increase markedly with the amount of curation desired, for 
example, meta-data, variable labeling, versioning, citation and unique identifiers, 
archiving, repository creation, data standards, release requirements and sequestration, 
among others. 
 
Barriers to Open Data and Software: A Collective Action Problem Faces 
Scientists 
 
As the scientific community reaches toward reproducibility of computational science 
through open data and software, there are a number of barriers. The first, mentioned 
earlier, is that a change in the standards of research dissemination is a classic collective 
action problem. One person may change their behavior but unless others follow, he or 
she is penalized for deviating from the norm, in this case spending time on data and 
code release rather than more publications (publications are recognized and rewarded 
in scientific careers, unlike data and code production). Federal agency action is required 
to break this gridlock and shift the community toward data and software sharing 
together. Federal agency action is also required to ensure that scientists receive credit, 
through citation and attribution, for their data and software contributions to science. One 
important step was taken by the National Science Foundation in October of 2012 when 
it permitted grant applicants to list research products, such as citable data and software, 
in biographical sketches, rather than restricting the list of contributions to publications 
only. More steps like this should be taken, including providing citation recommendations 
for data and software re-use, and expectations that use of data or software be cited or 
claimed as original to the author. 
 
Not all datasets or software are worthy of the same levels of curation. Curation can be 
costly in terms of human hours and it stands to reason that widely used datasets and 
software with potentially broad applicability should receive the majority of the curation 
resources. Provisions can be made that curation levels be increased for data or 
software that is used more than expected. 
 
There must be ways for data and software users to provide feedback on difficulties they 
found in re-use, and ways for these corrections and improvements to be acted upon. 
Such a mechanism can help establish standards for data and code curation and release 
within a community.  
 
The kind of sharing infrastructure associated with data and associated with software are 
very different. Data is typically shared as an annotated file in repository, whereas 
software is much more interaction, typically shared through a version control system, 
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perhaps with an overlay for web access such as GitHub.com (for open source software, 
not scientific software specifically). Reproducibility demands that we consider both the 
data and code associated with published computational results, and each of these have 
very different infrastructure needs for open accessibility. What version is used, how to 
manage updates and changes to data or software, what meta-data is needed, what 
standards apply and what documentation is expected, and how to link to the associated 
publication differ for data and for software. 
 
Intellectual Property Issues in Open Scientific Data and Software 
 
Intellectual Property Law comes to bear on both scientific data and software. 
Longstanding scientific norms encourage reproducible research, and scientists find it 
natural to openly share their findings, data, software, such that results may be 
understood and validated by others. Copyright adheres by default to both the scientific 
manuscript and software, and adhere to the original “selection and arrangement” of the 
data, although not to the raw facts themselves. This has resulted in efforts to apply open 
licensing to scholarly digital objects such that they may be shared as is natural in the 
scientific community: use my work, validate it, build on it, but make sure I am given 
appropriate citation for my contributions.2 A broad fair use exception for scientific 
research that includes data and software would align Intellectual Property Law with 
scientific norms and needs for reproducibility, and maximize future discoveries and use 
of the data and code, both within the research community and within industry. 
 
With software established as an indispensible tool in scientific discovery, a 
computational researcher can be faced with an unexpected conflict: conform to scientific 
norms of reproducibility and reveal the software that generated the results, or seek a 
software patent and license access to the code. Traditionally the research methodology 
was contained in the published report, but in the computational sciences methodology is 
encapsulated within a potentially patentable medium, software. It is important that the 
needs of science, especially those of reproducibility, remain paramount to patenting in 
order to promote high integrity scientific research. Making data and code available in an 
archives the goals for transparency and technology transfer embodied in the Bayh-Dole 
Act, and can be done in a way that is coordinated and harmonious between the relevant 
funding agencies. 
 
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  For	  discussions	  of	  open	  licensing	  for	  computational	  scientific	  research	  see	  e.g.	  V.	  Stodden,	  “The	  Legal	  Framework	  
for	  Reproducible	  Scientific	  Research:	  Licensing	  and	  Copyright,”	  Computing	  in	  Science	  and	  Engineering,	  11(1),	  2009;	  
and	  see	  also	  V.	  Stodden,	  “Enabling	  Reproducible	  Research:	  Open	  Licensing	  for	  Scientific	  Innovation,”	  International	  
Journal	  of	  Communications	  Law	  and	  Policy,	  Issue	  13,	  2009.	  Available	  at	  
http://ijclp.net/old_website/article.php?doc=1&issue=13_2009	  
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Conclusion 
 
The issue of reproducibility in computational science cuts across all manner of 
disciplines and research areas, from the liberal arts to engineering. The solutions are 
not obvious, but it is clear they can emerge with experience and action. It is imperative 
that data and code are made conveniently available with published research findings. 
Data and software availability do not, by themselves, ensure reproducibility of published 
computational findings, but they are an essential step toward the solution. 
 
Thank you for the opportunity to testify this morning.  I look forward to answering any 
questions you may have. 



Setting the Default to Reproducible

Reproducibility in Computational and

Experimental Mathematics

Developed collaboratively by the ICERM workshop participants1

Compiled and edited by the Organizers

V. Stodden, D. H. Bailey, J. Borwein, R. J. LeVeque, W. Rider, and W. Stein

Abstract

Science is built upon foundations of theory and experiment validated and improved through open, trans-
parent communication. With the increasingly central role of computation in scientific discovery this means
communicating all details of the computations needed for others to replicate the experiment, i.e. making avail-
able to others the associated data and code. The “reproducible research” movement recognizes that traditional
scientific research and publication practices now fall short of this ideal, and encourages all those involved in
the production of computational science – scientists who use computational methods and the institutions that
employ them, journals and dissemination mechanisms, and funding agencies – to facilitate and practice really
reproducible research.

This report summarizes discussions that took place during the ICERM Workshop on Reproducibility in
Computational and Experimental Mathematics, held December 10-14, 2012. The main recommendations that
emerged from the workshop discussions are:

1. It is important to promote a culture change that will integrate computational reproducibility into the
research process.

2. Journals, funding agencies, and employers should support this culture change.

3. Reproducible research practices and the use of appropriate tools should be taught as standard operat-
ing procedure in relation to computational aspects of research.

The workshop discussions included presentations of a number of the diverse and rapidly growing set of soft-
ware tools available to aid in this effort. We call for a broad implementation of these three recommendations
across the computational sciences.

Introduction

The emergence of powerful computational hardware, combined with a vast array of
computational software, presents unprecedented opportunities for researchers in math-
ematics and science. Computing is rapidly becoming the backbone of both theory and
experiment, and essential in data analysis, interpretation, and inference.

Unfortunately the scientific culture surrounding computational work has evolved in ways
that often make it difficult to verify findings, efficiently build on past research, or even to ap-
ply the basic tenets of the scientific method to computational procedures. Bench scientists
are taught to keep careful lab notebooks documenting all aspects of the materials and

1For a list of participants see Appendix H or the workshop webpage http://icerm.brown.edu/

tw12-5-rcem.
Version of February 16, 2013.
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http://icerm.brown.edu/tw12-5-rcem
http://icerm.brown.edu/tw12-5-rcem


methods they use including their negative as well as positive results, but computational
work is often done in a much less careful, transparent, or well-documented manner. Often
there is no record of the workflow process or the code actually used to obtain the published
results, let alone a record of the false starts. This ultimately has a detrimental effect on re-
searchers’ own productivity, their ability to build on past results or participate in community
efforts, and the credibility of the research among other scientists and the public [6].

There is increasing concern with the current state of affairs in computational science
and mathematics, and growing interest in the idea that doing things differently can have a
host of positive benefits that will more than make up for the effort required to learn new work
habits. This research paradigm is often summarized in the computational community by the
phrase “reproducible research.” Recent interest and improvements in computational power
have led to a host of new tools developed to assist in this process. At the same time there
is growing recognition among funding agencies, policy makers, and the editorial boards of
scientific journals of the need to support and encourage this movement. 2. A number of
workshops have recently been held on related topics, including a Roundtable at Yale Law
School [14] a workshop as part of the Applied Mathematics Perspectives 2011 conference
[2, 7], and several minisymposia at other conferences, including SIAM Conferences on
Computational Science and Engineering 2011 and ICIAM 2011.

The ICERM Workshop on Reproducibility in Computational and Experimental Mathe-
matics, held December 10-14, 2012, provided the first opportunity for a broad cross section
of computational scientists and mathematicians, including pure mathematicians who focus
on experimental mathematics or computer-assisted proofs, to discuss these issues and
brainstorm ways to improve on current practices. The first two days of the workshop fo-
cused on introducing the themes of the meeting and discussing policy and cultural issues.
In addition to introductory talks and open discussion periods, there were panels on fund-
ing agency policies and on journal and publication policies. The final three days featured
many talks on software tools that help achieve reproducibility and other more technical
topics in the mornings. Afternoons were devoted to breakout groups discussing specific
topics in more depth, which resulted in recommendations and other outcomes. Breakout
group topics included: reproducibility tools, funding policies, publication policies, numerical
reproducibility, taxonomy of terms, reward structure and cultural issues, and teaching re-
producible research techniques. 3 We also held a tutorial on version control the day before
the official start of the workshop. 4

Both in the workshop and in this report the terms “reproducible research” and “repro-
ducibility” most often refer to the ability to recreate computational results from the data
and code used by the original researcher [11]. This is related to but distinct from both
the notions of “numerical reproducibility” of computational results, referring to when the
same program may give different results due to hardware or compiler issues, particular
in the context of parallel computing, and “repeatability,” when an experiment is conducted
independently from first principles. A taxonomy of reproducibility concepts is developed in
Appendix A and a discussion of numerical reproducibility appears in Appendix B.

2See National Science Foundation Data Management Plan http://, ACM Publications Policy http://
3See the workshop program at http://icerm.brown.edu/tw12-5-rcem.
4http://icerm.brown.edu/tw12-5-rcem-tutorial.
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About this document

This document reports on the three main recommendations emerging from the work-
shop discussions:

1. It is important to promote a culture change that will integrate computational repro-
ducibility into the research process.

2. Journals, funding agencies, and employers should support this culture change.

3. Reproducible research practices and the use of appropriate tools should be taught
as standard operating procedure in relation to computational aspects of research.

The recommendations are each discussed in turn in the three sections of this docu-
ment, and we include five appendices that develop important topics in further detail. Be-
sides the appendices mentioned above on taxonomy and numerical reproducibility, there
are appendices on best practices for publishing research, the state of reproducibility in ex-
perimental mathematics, and tools to aid in reproducible research. An initial draft of this
document was presented to participants and discussed on the final day of the workshop,
and participants were able to give input on the final draft before submission.

In addition to this document, a number of other products emerged from the workshop.
Video of the talks is available at http://icerm.brown.edu/video_archive, and numerous
topical references were collected on the workshop wiki 5. The workshop webpage and the
wiki also contain participant thought pieces, slides from the talks, and breakout group
reports. Readers are invited to contribute to the wiki. A snapshot of the wiki is appended
at the end of the report as Figure 1.

1. Changing the Culture and Reward Structure

For reproducibility to be fostered and maintained, workshop participants agreed that
cultural changes need to take place within the field of computationally based research
that instill the open and transparent communication of results as a default. Such a mode
will increase productivity — less time wasted in trying to recover output that was lost or
misplaced, less time wasted trying to double-check results in the manuscript with compu-
tational output, and less time wasted trying to determine whether other published results
(or even their own) are truly reliable. Open access to any data used in the research and
to both primary and auxiliary source code also provides the basis for research to be com-
municated transparently creating the opportunity to build upon previous work, in a similar
spirit as open software provided the basis for Linux. Code and data should be made avail-
able under open licensing terms as discussed in Appendix F. [9] This practice enables
researchers both to benefit more deeply from the creative energies of the global commu-
nity and to participate more fully in it. Most great science is built upon the discoveries of
preceding generations and open access to the data and code associated with published
computational science allows this tradition to continue. Researchers should be encour-
aged to recognize the potential benefits of openness and reproducibility.

5Available at http://is.gd/RRlinks, see Figure 1.
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It is also important to recognize that there are costs and barriers to shifting to a practice
of reproducible research, particularly when the culture does not recognize the value of
developing this new paradigm or the effort that can be required to develop or learn to use
suitable tools. This is of particular concern to young people who need to earn tenure
or secure a permanent position. To encourage more movement towards openness and
reproducibility, it is crucial that such work be acknowledged and rewarded. The current
system, which places a great deal of emphasis on the number of journal publications and
virtually none on reproducibility (and often too little on related computational issues such as
verification and validation), penalizes authors who spend extra time on a publication rather
than doing the minimum required to meet current community standards. Appropriate credit
should given for code and data contributions including an expectation of citation. Another
suggestion is to instantiate yearly award from journals and/or professional societies, to
be awarded to investigators for excellent reproducible practice. Such awards are highly
motivating to young researchers in particular, and potentially could result in a sea change in
attitudes. These awards could also be cross-conference and journal awards; the collected
list of award recipients would both increase the visibility of researchers following good
practices and provide examples for others.

More generally, it is unfortunate that software development and data curation are often
discounted in the scientific community, and programming is treated as something to spend
as little time on as possible. Serious scientists are not expected to carefully test code, let
alone document it, in the same way they are trained to properly use other tools or document
their experiments. It has been said in some quarters that writing a large piece of software
is akin to building infrastructure such as a telescope rather than a creditable scientific
contribution, and not worthy of tenure or comparable status at a research laboratory. This
attitude must change if we are to encourage young researchers to specialize in computing
skills that are essential for the future of mathematical and scientific research. We believe
the more proper analog to a large scale scientific instrument is a supercomputer, whereas
software reflects the intellectual engine that makes the supercomputers useful, and has
scientific value beyond the hardware itself. Important computational results, accompanied
by verification, validation, and reproducibility, should be accorded with honors similar to a
strong publication record [7].

Several tools were presented at the workshop that enable users to write and publish
documents that integrate the text and figures seen in reports with code and data used to
generate both text and graphical results, such as IPython, Sage notebooks, Lepton, knitr,
and Vistrails. Slides for these talks are available on the wiki [1] and Appendix E discusses
these and other tools in detail.

The following two sections and the appendices outline ideas from the workshop on
ways in which journals, funding agencies, and employers can support reproducibility.

2. Funding Agencies, Journals, Employers Should Support This Change

Incentives in scholarly research are influenced by three main sources, the funding
agency, dissemination processes such as journals, and employers such as those on tenure
committees and lab managers. The workshop discussions mentioned the role of each of
them in shifting to a culture of reproducible computational research.
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The Role of Funding Agency Policy

Workshop participants suggested that funding sources, both government agencies and
private foundations, consider establishing some reasonable standards for proposals in the
arena of mathematical and computational science. If such standards become common
among related agencies this would significantly simplify the tasks involved in both prepar-
ing and reviewing proposals, as well as supporting a culture change toward reproducible
computational research.

For example, workshop participants recommend that software and data be “open by
default” unless it conflicts with other considerations. Proposals involving computational
work might be required to provide details such as:

• Extent of computational work to be performed.

• Platforms and software to be utilized.

• Reasonable standards for dataset and software documentation, including reuse (some
agencies already have such requirements [8]).

• Reasonable standards for persistence of resulting software and dataset preservation
and archiving.

• Reasonable standards for sharing resulting software among reviewers and other re-
searchers.

In addition, we suggest that funding agencies might add “reproducible research” to the
list of specific examples that proposals could include in their requirements such as “Broader
Impact” statements. Software and dataset curation should be explicitly included in grant
proposals and recognized as a scientific contribution by funding agencies. Templates for
data management plans could be made available that include making software open and
available, perhaps by funding agencies, or by institutional archiving and library centers. 6

Participants also suggested that statements from societies and others on the impor-
tance of reproducibility could advance the culture change. In addition, funding agencies
could provide support for training workshops on reproducibility, and cyberinfrastructure for
reproducibility at scale, for both large projects and long-tail research efforts. Funding agen-
cies are key to the promotion of a culture that embraces reproducible research, due to their
central importance in the research process. We turn to journals next, and then employers.

The Role of Journal Policy

There is a need to produce a set of “best practices” for publication of computational
results i.e. any scientific results in which computation plays a role, for example in empirical
research, statistical analysis, or image processing. We recommend that a group repre-
senting several professional societies in the mathematical sciences be formed to develop
a set of best practices for publication of research results. Such guidelines would be useful

6For examples see http://scholcomm.columbia.edu/data-management/

data-management-plan-templates/, http://www2.lib.virginia.edu/brown/data/NSFDMP.html
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to the editorial boards of many journals, as well as to authors, editors, and referees who
are concerned about promoting reproducibility. Best practices may be tailored to different
communities, but one central concern, for which there was almost unanimous agreement
by the workshop participants, is the need for full disclosure of salient details regarding
software and data use. This should include specification of the dataset used (including
URL and version), details of the algorithms employed (or references), the hardware and
software environment, the testing performed, etc., and would ideally include availability of
the relevant computer code with a reasonable level of documentation and instructions for
repeating the computations performed to obtain the results in the paper. 7.

There is also a need for better standards on how to include citations for software and
data in the references of a paper, instead of inline or as footnotes. Proper citation is
essential both for improving reproducibility and in order to provide credit for work done
developing software and producing data, which is a key component in encouraging the
desired culture change [7].

Workshop participants agreed that it is important that a set of standards for reviewing
papers in the computational arena be established. Such a set of standards might include
many or all of the items from a “best practices” list, together with a rational procedure for
allowing exceptions or exclusions. Additionally, provisions are needed to permit referees
to obtain access to auxiliary information such as computer codes or data, and the ability to
run computational tests of the results in submitted papers, if desired.

Different journals may well adopt somewhat different standards of code and data dis-
closure and review [12], but it is important that certain minimal standards of reproducibility
and rigor be maintained in all refereed journal publications. Along these lines, it may be
desirable for the computational claims of a manuscript to be verifiable at another site such
as RunMyCode.org, or on another computer system with a similar configuration.

Some related issues in this arena include: (a) anonymous versus public review, (b)
persistence (longevity) of code and data that is made publicly available, and (c) how code
and data can be “watermarked,” so that instances of uncited usage (plagiarism) can be
detected and provenance better established (d) how to adjudicate disagreements that in-
evitably will arise.

Very rigorous verification and validity testing, along with a full disclosure of compu-
tational details, should be required of papers making important assertions, such as the
computer-assisted proof of a long-standing mathematical result, new scientific breakthroughs,
or studies that will be the basis for critical policy decisions [13].

Proper consideration of openness constraints can enable a larger community to par-
ticipate in the goals of reproducible research. This can include issues such as copyright,
patent, medical privacy, personal privacy, security, and export issues. This is discussed
further in Appendix F.

It was recognized that including such details in submitted manuscripts (or, at the least,
in supplementary materials hosted by the journal) is a significant departure from estab-
lished practice, where few such details are typically presented. But these changes will be
required if the integrity of the computational literature is to be maintained. Computational
approaches have become central to science and cannot be completely documented and

7See for example http://software.ac.uk/so-exactly-what-software-did-you-use
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transparent without the full disclosure of computational details. Appendix D contains the
full list of workshop suggestions.

The Role of Employers and Research Managers

The third source of influence on the research process stems from employers – tenure
and promotion committees and research managers at research labs. Software and dataset
contributions, as described in the previous two subsections, should be rewarded as part
of expected research practices. Data and code citation practices should be recognized
and expected in computational research. Prizes for reproducible research should also be
recognized in tenure and promotion decisions.

Institutional libraries can also play a role in supporting a culture change toward repro-
ducible research. As mentioned above, they can and do provide template data manage-
ment plans, but they are also highly experienced in archiving, stewardship and dissemi-
nation of scholarly objects. Greater coordination between departments and the institute’s
library system could help provide the support and resources necessary to manage and
maintain digital scholarly output, including datasets and code [4].

3. Teaching Reproducibility Skills

Proficiency in the skills required to carry out reproducible research in the computa-
tional sciences should be taught as part of the scientific methodology, along with teaching
modern programming and software engineering techniques. This should be a standard
part of any computational research curriculum, just as experimental or observational sci-
entists are taught to keep a laboratory notebook and follow the scientific method. Adopting
appropriate tools (see Appendix E) should be encouraged, if not formally taught, during
the training and mentoring of students and postdoctoral fellows. Without a change in cul-
ture and expectations at this stage, reproducibility will likely never enter the mainstream of
mathematical and scientific computing.

We see at least five separate ways in which these skills can be taught: full aca-
demic courses, incorporation into existing courses, workshops and summer schools, online
courses or self-study materials, and last but certainly not least, teaching-by-example on the
part of mentors.

Although a few full-scale courses on reproducibility have been attempted (see the wiki
for links), we recognize that adding a new course to the curriculum or the students’ sched-
ules is generally not feasible. It seems more effective as well as more feasible to incor-
porate teaching the tools and culture of reproducibility into existing courses on various
subjects, concentrating on the tools most appropriate for the domain of application. For
example, several workshop participants have taught classes in which version control is
briefly introduced and then students are required to submit homework by pushing to a
version control repository as a means of encouraging this habit.

A list of potential curriculum topics on reproducibility are listed in Appendix G. Ideally,
courseware produced at one institution should be shared with others under an appropriate
open license.
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Conclusion

The goal of computational reproducibility is to provide a solid foundation to compu-
tational science, much like a rigorous proof is the foundation of mathematics. Such a
foundation permits the transfer of knowledge that can be understood, implemented, evalu-
ated, and used by others. This reports discusses the efforts of participants and organizers
of the ICERM workshop on “Reproducibility in Computational and Experimental Mathe-
matics” to formulate steps toward the ideal of reproducible computational research. We
identified three key recommendations emerging from workshop discussions, calling for a
culture change toward reproducible research, mapping roles for funding agencies, journals,
and employers to support this change, and emphasizing that methods and best practices
for reproducible research must be taught. We also include detailed appendices on related
issues that arose in the workshop discussions, including a taxonomy of terms, numerical
reproducibility, best practices for publishing reproducible research, a summary of the state
of experimental mathematics, and tools to aid in reproducible research. To capture the
phenomenal level of engagement by workshop participants, we collate further information,
including their talk slides, thought pieces, and further references on the workshop wiki.
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Appendices

These appendices contain some additional material arising from workshop discussions.
We have avoided including long lists of references in these appendices. Instead, many
links have been collected and categorized on the workshop wiki, which can be referred to
for more examples, additional tools, articles, editorials, etc.8

A Terminology and Taxonomy

The terms “reproducible research” and “reproducibility” are used in many different ways to
encompass diverse aspects of the desire to make research based on computation more
credible and extensible. Lively discussion over the course of the workshop has led to some
suggestions for terminology, listed below. We encourage authors who use such terms in
their work to clarify what they mean in order to avoid confusion.

There are several possible levels of reproducibility, and it seems valuable to distinguish
between the following:

• Reviewable Research. The descriptions of the research methods can be indepen-
dently assessed and the results judged credible. (This includes both traditional peer
review and community review, and does not necessarily imply reproducibility.)

• Replicable Research. Tools are made available that would allow one to duplicate
the results of the research, for example by running the authors’ code to produce
the plots shown in the publication. (Here tools might be limited in scope, e.g., only
essential data or executables, and might only be made available to referees or only
upon request.)

• Confirmable Research. The main conclusions of the research can be attained inde-
pendently without the use of software provided by the author. (But using the complete
description of algorithms and methodology provided in the publication and any sup-
plementary materials.)

• Auditable Research. Sufficient records (including data and software) have been
archived so that the research can be defended later if necessary or differences be-
tween independent confirmations resolved. The archive might be private, as with
traditional laboratory notebooks.

• Open or Reproducible Research. Auditable research made openly available. This
comprised well-documented and fully open code and data that are publicly available
that would allow one to (a) fully audit the computational procedure, (b) replicate and
also independently reproduce the results of the research, and (c) extend the results
or apply the method to new problems.

Other terms that often arise in discussing reproducibility have specific meanings in
computational science. In particular the widely-used acronym V&V (verification & valida-

8For the wiki see http://icerm.brown.edu/tw12-5-rcem-wiki.php or http://is.gd/RRlinks
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tion) makes it difficult to use “verify” or “validate” more generally. These terms are often
defined as follows:

• Verification. Checking that the computer code correctly solves the mathematical
problem it claims to solve. (Does it solve the equation right?)

• Validation. Checking that the results of a computer simulation agree with experiments
or observations of the phenomenon being studied. (Does it solve the right equation?)

The term “Uncertainty Quantification (UQ)” is also commonly used in computational
science to refer to various approaches to assessing the effects of all of then uncertainties
in data, models, and methods on the final result, which is often then viewed as a probability
distribution on a space of possible results rather than a single answer. This is an important
aspect of reproducibility in situations where exact duplication of results cannot be expected
for various reasons.

The provenance of a computational result is a term borrowed from the art world, and
refers to a complete record of the source of any raw data used, the computer programs or
software packages employed, etc. The concept of provenance generally includes a record
of changes that the dataset or software has undergone.

B Numerical Reproducibility

Numerical round-off error and numerical differences are greatly magnified as computa-
tional simulations are scaled up to run on highly parallel systems. As a result, it is increas-
ingly difficult to determine whether a code has been correctly ported to a new system,
because computational results quickly diverge from standard benchmark cases. And it is
doubly difficult for other researchers, using independently written codes and distinct com-
puter systems, to reproduce published results.

One solution is to utilize some form of higher precision arithmetic, such as Kahan’s
summation or “double-double” arithmetic. In many cases, such higher precision arithmetic
need only be used in global summations or other particularly sensitive operations, so that
the overall runtime is not greatly increased. Such measures have dramatically increased
reproducibility in various codes, ranging from climate simulations to computational physics
applications [3].

But it is clear that this solution will not work for all applications. Other approaches
include interval arithmetic (which potentially can provide provable bounds on final results),
affine arithmetic (which works better than interval arithmetic in some cases), and also
some proposed new tools, currently under development at U.C. Berkeley, that can pin down
numerically sensitive sections of code and take corrective actions. in any event, additional
study and research is in order. Certainly the available tools for high-precision computation
need to be significantly refined so as to be usable and highly reliable for a wide range of
users.

It is clear that these issues must be addressed with greater diligence by authors of
all manuscripts presenting results of numeric computations. They must be more careful
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to state exactly what levels of numeric precision (32-bit, 64-bit or higher precision) have
been used, and to present evidence that their selected precision is adequate to achieve a
reasonable level of reproducibility in their results.

One of the foundations of reproducibility is how to deal with (and set standards for)
difficulties such as numerical round-off error and numerical differences when a code is run
on different systems or different numbers of processors. Such difficulties are magnified as
problems are scaled up to run on very large, highly parallel systems.

Computations on a parallel computer system present particularly acute difficulties for
reproducibility since, in typical parallel usage, the number of processors may vary from
run to run. Even if the same number of processors is used, computations may be split
differently between them or combined in a different order. Since computer arithmetic is not
commutative, associative, or distributive, achieving the same results twice can be a matter
of luck. Similar challenges arise when porting a code from one hardware or software
platform to another.

The IEEE Standards for computer arithmetic resulted in significant improvements in
numerical reproducibility on single processors when they were introduced in the 1970s.
Some work is underway on extending similar reproducibility to parallel computations, for
example in the Intel Mathematics Kernel Library (MKL), which can use used to provide
parallel reproducibility for mathematical computations.

Additional issues in this general arena include: (a) floating-point standards and whether
they being adhered to on the platform in question, (b) changes that result from different lev-
els of optimization, (c) changes that result from employing library software, (d) verification
of results, and (e) fundamental limits of numerical reproducibility, what are reasonable ex-
pectations and what are not.

The foundation of numerical reproducibility is also grounded in the computing hardware
and in the software stack. Studies on silent data corruption (SDC) have documented SDC
in field testing, as discussed in some of the references on the wiki.

Field data on supercomputer DRAM memory failures have shown that advanced er-
ror correcting codes (ECC) are required and technology roadmaps suggest this problem
will only get worse in the coming years. Designing software that can do some or all of
identification, protection, and correction will become increasingly important. Still, there is
much work being done to quantify the problem on current and next generation hardware
and approaches to addressing it. Several United States and international governmental re-
ports have been produced on the need for, outlining ongoing research in, and proscribing
roadmaps.

These foundational components set a limit to the achievable reproducibility and make
us aware that we must continually assess just how reproducible our methods really are.

C The State of Experimental Mathematics

Automatic theorem proving has now achieved some truly impressive results such as fully
formalized proofs of the Four color theorem and the Prime number theorem. While such
tools currently require great effort, one can anticipate a time in the distant future when all
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truly consequential results are so validated.

The emerging discipline of experimental mathematics, namely the application of high-
performance computing technology to explore research questions in pure and applied
mathematics, raises numerous issues of computational reproducibility [5]. Experimental
mathematics research often press the state-of-the-art in very high precision computa-
tion (often hundreds or thousands of digits), symbolic computation, graphics and paral-
lel computation. There is a need to carefully document algorithms, implementation tech-
niques, computer environments, experiments and results, much as with other forms of
computation-based research. Even more emphasis needs to be placed on aspects of
such research that are unique to this discipline: (a) Are numeric precision levels (often
hundreds or even thousands of digits) adequate for the task at hand? (b) What inde-
pendent consistency checks have been employed to validate the results? (c) If symbolic
manipulation software was employed (e.g., Mathematica or Maple), exactly which version
was used?9 (c) Have numeric spot-checks been performed to check derived identities and
other results? (d) Have symbolic manipulations been validated, say by using two different
symbolic manipulation packages?

Such checks are often required, because even the best symbolic and numeric com-
putation packages have bugs and limitations, which bugs are often only exhibited when
doing state-of-the-art research computations. Workshop participants identified numerous
instances of such errors in their work, underscoring the fact that one cannot place unques-
tioned trust in such results.

D Best Practices for Publishing Research

Publishing can take many forms – traditional journal publication is one avenue but other
electronic options are increasingly being used. Traditional publications are also frequently
complemented by “supplementary materials” posted on a journal’s website or in other
archival-quality data or code repositories.

A number of suggestions were made regarding best practices for publications of re-
search results. To aid in reproducibility, the available materials should ideally contain:

• A precise statement of assertions to be made in the paper.

• A statement of the computational approach, and why it constitutes a rigorous test of
the hypothesized assertions.

• Complete statements of, or references to, every algorithm employed.

• Salient details of auxiliary software (both research and commercial software) used in
the computation.

• Salient details of the test environment, including hardware, system software and the
number of processors utilized.

9Indeed, one needs to know which precise functions were called, with what parameter values and environ-
mental settings?
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• Salient details of data reduction and statistical analysis methods.

• Discussion of the adequacy of parameters such as precision level and grid resolution.

• Full statement (or at least a valid summary) of experimental results.

• Verification and validation tests performed by the author(s).

• Availability of computer code, input data and output data, with some reasonable level
of documentation.

• Curation: where are code and data available? With what expected persistence and
longevity? Is there a site for site for future updates, e.g. a version control repository
of the code base?

• Instructions for repeating computational experiments described in the paper.

• Terms of use and licensing. Ideally code and data “default to open”, i.e. a permissive
re-use license, if nothing opposes it.

• Avenues of exploration examined throughout development, including information about
negative findings.

• Proper citation of all code and data used, including that generated by the authors.

Several publications have adopted some requirements for reproducibility (e.g., Bio-
statistics, TOMS, IPOL, or conferences such as SIGMOD). In addition to those discussed in
the main article, some other recommendations arose in discussions and break-out groups
to change the culture in relation to reproducibility in publications. Journals or other publi-
cations could offer certifications of reproducibility that would kite-mark a paper satisfying
certain requirements, as done by the journal Biostatistics, for example. Certification could
also come from an independent entity such as RunMyCode.org. Journals could also create
reproducible overlay issues for journals that collect together reproducible papers. Linking
publications to sites where code and data are hosted will help shift toward reproducible
research. For example, the SIAM Journal on Imaging Science provides cross-referencing
with the peer-reviewed journal Image Processing On Line (IPOL) and encourage authors
to submit software to IPOL. Other sites such as RunMyCode.org or Wakari might be used
in a similar way. Finally, all code and data should be labeled with author information.

E Tools to aid in reproducible research

A substantial portion of the workshop focused on tools to aid in replicating past compu-
tational results (by the same researcher and/or by others) and to assist in tracking the
provenance of results and the workflow used to produce figures or tables, along with dis-
cussion of the policy issues that arise in connection with this process.

Some tools are aimed at easing literate programming and publishing of computer code,
either as commented code or in notebook environments. Other tools help capture the
provenance of a computational result and/or the complete software software environment
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used to run a code. Version control systems have been around for decades, but new tools
facilitate the use of version control both for collaborative work and for archiving projects
along with the complete history. Collaborative high performance computational tools, while
still infrequently used, now allow researchers at multiple locations to explore climate or
ocean flow models in real time. Less sophisticated but instructive applets generated in
geometry or computer algebra packages can easily be shared and run over the internet.
We gives an overview of tools in these various categories. A list of links to these tools and
many others can also be found on the wiki.

Literate programming, authoring, and publishing tools. These tools enable users
to write and publish documents that integrate the text and figures seen in reports with
code and data used to generate both text and graphical results. In contrast to notebook-
based tools discussed below, this process is typically not interactive, and requires a sep-
arate compilation step. Tools that enable literate programming include both programming-
language-specific tools such as WEB, Sweave, and knitr, as well as programming-language-
independent tools such as Dexy, Lepton, and noweb. Other authoring environments in-
clude SHARE, Doxygen, Sphinx, CWEB, and the Collage Authoring Environment.

Tools that define and execute structured computation and track provenance.
Provenance refers to the tracking of chronology and origin of research objects, such as
data, source code, figures, and results. Tools that record provenance of computations
include VisTrails, Kepler, Taverna, Sumatra, Pegasus, Galaxy, Workflow4ever, and Mada-
gascar.

Integrated tools for version control and collaboration. Tools that track and manage
work as it evolves facilitate reproducibility among a group of collaborators. With the advent
of version control systems (e.g., Git, Mercurial, SVN, CVS), it has become easier to track
the investigation of new ideas, and collaborative version control sites like Github, Google
Code, BitBucket, and Sourceforge enable such ideas to be more easily shared. Further-
more, these web-based systems ease tasks like code review and feature integration, and
encourage collaboration.

Tools that express computations as notebooks. These tools represent sequences
of commands and calculations as an interactive worksheet with pretty printing and in-
tegrated displays, decoupling content (the data, calculations) from representation (PDF,
HTML, shell console), so that the same research content can be presented in multiple
ways. Examples include both closed-source tools such as MATLAB (through the publish
and app features), Maple, and Mathematica, as well as open-source tools such as IPython,
Sage, RStudio (with knitr), and TeXmacs.

Tools that capture and preserve a software environment. A major challenge in
reproducing computations is installing the prerequisite software environment. New tools
make it possible to exactly capture the computational environment and pass it on to some-
one who wishes to reproduce a computation. For instance, VirtualBox, VMWare, or Va-
grant can be used to construct a virtual machine image containing the environment. These
images are typically large binary files, but a small yet complete text description (a recipe
to create the virtual machine) can be stored in their place using tools like Puppet, Chef,
Fabric, or shell scripts. Blueprint analyzes the configuration of a machine and outputs its
text description. ReproZip captures all the dependencies, files and binaries of the exper-
iment, and also creates a workflow specification for the VisTrails system in order to make
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the execution and exploration process easier. Application virtualization tools, such as CDE
(Code, Data, and Environment), attach themselves to the computational process in order
to find and capture software dependencies.

Computational environments can also be constructed and made available in the cloud,
using Amazon EC2, Wakari, RunMyCode.org and other tools. VCR, or Verifiable Compu-
tational Research, creates unique identifiers for results that permits their reproduction in
the cloud.

Another group are those tools that create an integrated software environment for re-
search that includes workflow tracking, as well as data access and version control. Exam-
ples include Synapse/clearScience and HUBzero including nanoHUB.

Interactive theorem proving systems for verifying mathematics and computation.
“Interactive theorem proving”, a method of formal verification, uses computational proof
assistants to construct formal axiomatic proofs of mathematical claims. Examples include
coq, Mizar, HOL4, HOL Light, ProofPowerHOL, Isabelle, ACL2, Nuprl, Veritas, and PVS.
Notable theorems such as the Four Color Theorem have been verified in this way, and
Thomas Hales’s Flyspeck project, using HOL Light and Isabelle, aims to obtain a formal
proof of the Kepler conjecture. Each one of these projects produces machine-readable and
exchangeable code that can be integrated in to other programs. For instance, each formula
in the web version of NIST’s authoritative Digital Library of Mathematical Functions may be
downloaded in TeX or MathML (or indeed as a PNG image) and the fragment directly
embedded in an article or other code. This dramatically reduces chances of transcription
error and other infelicities being introduced.

While we have organized these tools into broad categories, it is important to note that
users often require a collection of tools depending on their domain and the scope of re-
producibility desired. For example, capturing source code is often enough to document
algorithms, but to replicate results on high-performance computing resources, for exam-
ple, the build environment or hardware configuration are also important ingredients. Such
concerns have been categorized in terms of the depth, portability, and coverage of repro-
ducibility desired.

The development of software tools enabling reproducible research is a new and rapidly
growing area of research. We think that the difficulty of working reproducibly will be sig-
nificantly reduced as these and other tools continue to be adopted and improved. The
scientific, mathematical, and engineering communities should encourage the development
of such tools by valuing them as significant contributions to scientific progress.

F Copyright and licensing

The copyright issue is pervasive in software and can affect data, but solutions have been
created through open licensing and public domain dedication. Copyright adhere to all soft-
ware and scripts as an author types, and care must be taken when sharing these codes that
permission is given for others to copy, reproduce, execute, modify and otherwise use the
code. For reproducibility of scientific findings an attribution-only license is recommended,
such as the Apache, MIT, or Modified BSD license [10]. Copyright does not adhere to raw
facts, and so the raw numbers in a dataset do not fall under copyright. But datasets can
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have copyright barriers to reuse if they contain “original selection and arrangement” of the
data, and for this reason dedication to the public domain is suggested using the Creative
Commons CC0 license for example [9]. In addition, dataset authors can provide a citation
suggestion for others who use the dataset. These steps will permit shared code and data
to be copied, run on other systems, modified, and results replicated, and help encourage
a system of citation for both code and data.

Limits to disclosure of data also include issues such as release of individual data for
medical records, census data, and for example Google search data is not publicly share-
able except in the aggregate. Of course “the aggregate” is defined differently in each
domain. We also recognize that legal standards in different jurisdictions (e.g. European
Union, United States, Japan) can vary and that each individual needs to apprise them-
selves of the most substantial differences.

The algorithms embodied in software can be patentable and the author or institution
may choose to seek a patent. Patents create a barrier to access and it is recommended
to license the software to commercial entities through a traditional patent, and permit open
access for research purposes. If patents restrict access to code this can inhibit repro-
ducibility, access to methods, and scientific progress. Within the commercial sphere, there
is a need for avenues to allow audit such as non-disclosure agreements (NDA) and inde-
pendent agents for auditing similar to financial audits. Public disclosure of algorithms and
code can prevent patenting by others, and ensure that such scholarly objects remain in the
public domain.

G The teaching and training of reproducibility skills

The breakout group on Teaching identified the following topics as ones that instructors
might consider including in a course on scientific computing with an emphasis on repro-
ducibility. Some subset of these might be appropriate for inclusion in many other courses.

• version control and use of online repositories,

• modern programming practice including unit testing and regression testing,

• maintaining “notebooks” or “research compendia”,

• recording the provenance of final results relative to code and/or data,

• numerical / floating point reproducibility and nondeterminism,

• reproducibility on parallel systems,

• dealing with large datasets,

• dealing with complicated software stacks and use of virtual machines,

• documentation and literate programming,

• IP and licensing issues, proper citation and attribution.
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The fundamentals/principles of reproducibility can and should taught already at the
undergraduate level. However, care must be taken to not overload the students with
technicalities whose need is not clear from the tasks assigned to them. Collaborative
projects/assignments can be a good motivation.

H Workshop Participants

Aron Ahmadia, Dhavide Aruliah, Jeremy Avigad, David Bailey, Lorena Barba, Blake
Barker, Sara Billey, Ron Boisvert, Jon Borwein, Brian Bot, Andre Brodtkorb, Neil Calkin,
Vincent Carey, Ryan Chamberlain, Neil Chue Hong, Timothy Clem, Noah Clemons, Con-
stantine Dafermos, Andrew Davison, Nathan DeBardeleben, Andrew Dienstfrey, David
Donoho, Katherine Evans, Sergey Fomel, Juliana Freire, James Glimm, Sigal Gottlieb,
Josh Greenberg, Tom Hales, Nicolas Hengartner, David Ketcheson, Matt Knepley, David
Koop, Randall LeVeque, Nicolas Limare, Elizabeth Loew, Ursula Martin, Bruce McHenry,
Chris Mentzel, Sarah Michalak, Ian Mitchell, Victor Moll, Hatef Monajemi, Akil Narayan,
Peter Norvig, Travis Oliphant, Peter Olver, Geoffrey Oxberry, Fernando Perez, Konrad
Polthier, Bill Rider, Robert Robey, Todd Rosenquist, Michael Rubinstein, Thomas Russell,
Fernando Seabra Chirigati, Li-Thiao-Te Sebastien, Benjamin Seibold, Loren Shure, Philip
Stark, William Stein, Victoria Stodden, Benjamin Stubbs, Andrew Sutherland, Matthias
Troyer, Jan Verschelde, Stephen Watt, Greg Wilson, Carol Woodward, Yihui Xie.

18



Figure 1: Snapshot of the Workshop Wiki as of January 20, 2013

19



8	 Copublished by the IEEE CS and the AIP 1521-9615/10/$26.00 © 2010 IEEE	 Computing in SCienCe & engineering
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RepRoducible ReseaRch
addRessing the need foR data and code shaRing in computational science

By the Yale Law School Roundtable on Data and Code Sharing 

P rogress in computational science 
is often hampered by research-
ers’ inability to independently 

reproduce or verify published re-
sults. Attendees at a roundtable at 
Yale Law School (www.stodden.net/
RoundtableNov212009) formulated 
a set of steps that scientists, funding 
agencies, and journals might take to 
improve the situation. We describe 
those steps here, along with a proposal 
for best practices using currently 
available options and some long-
term goals for the development of new 
tools and standards.

Why It Matters
Massive computation is transforming 
science. This is clearly evident from 
highly visible launches of large-scale 
data mining and simulation proj-
ects such as those in climate change 
prediction,1 galaxy formation (www.
mpa-garching.mpg.de/galform/virgo/
millennium/), and biomolecular mod-
eling (www.ks.uiuc.edu/Research/
namd). However, massive computa-
tion’s impact on science is also more 
broadly and fundamentally apparent in 
the heavy reliance on computation 
in everyday science across an ever-
increasing number of fields.

Computation is becoming central 
to the scientific enterprise, but the 
prevalence of relaxed attitudes about 
communicating computational exper-
iments’ details and the validation of 
results is causing a large and growing 
credibility gap.2 Generating verifiable 

knowledge has long been scientific 
discovery’s central goal, yet today it’s 
impossible to verify most of the com-
putational results that scientists pres-
ent at conferences and in papers.

To adhere to the scientific method in 
the face of the transformations arising 
from changes in technology and the 
Internet, we must be able to reproduce 
computational results. Reproducibility 
will let each generation of scientists 
build on the previous generations’ 
achievements. Controversies such as 
ClimateGate,3 the microarray-based 
drug sensitivity clinical trials under 
investigation at Duke University,4 and 
prominent journals’ recent retractions 
due to unverified code and data5,6 sug-
gest a pressing need for greater trans-
parency in computational science.

Traditionally, published science or 
mathematics papers contained both the 
novel contributions and the informa-
tion needed to effect reproducibility— 
such as detailed descriptions of the 
empirical methods or the mathemati-
cal proofs. But with the advent of com-
putational research, such as empirical 
data analysis and scientific code devel-
opment, the bulk of the actual infor-
mation required to reproduce results 
is not obvious from an article’s text; 
researchers must typically engage in 
extensive efforts to ensure the under-
lying methodologies’ transmission. 
By and large, researchers today aren’t 
sufficiently prepared to ensure repro-
ducibility, and after-the-fact efforts— 
even heroic ones—are unlikely to 

provide a long-term solution. We 
need both disciplined ways of work-
ing reproducibly and community sup-
port (and even pressure) to ensure that 
such disciplines are followed.

On 21 November 2009, scientists, 
lawyers, journal editors, and funding 
representatives gathered for the Yale 
Law School Roundtable to discuss how 
data and code might be integrated with 
tradition research publications (www. 
stodden.net/RoundtableNov212009). 
The inspiration for the roundtable 
came from the example set by mem-
bers of the genome research commu-
nity who organized to facilitate the 
open release of the genome sequence 
data. That community gathered in 
Bermuda in 1996 to develop a co-
operative strategy both for genome 
decoding and for managing the re-
sulting data. Their meeting produced 
the Bermuda Principles, which shaped 
data-sharing practices among re-
searchers in that community, ensur-
ing rapid data release (see www.ornl. 
gov/sci/techresources/Human_Genome/ 
research/bermuda.shtml). These prin-
ciples have been reaffirmed and 
extended several times, most re-
cently in a July 2009 Nature article.7 
Although the computational re-
search community’s particular in-
centives and pressures differ from 
those in human genome sequencing, 
one of our roundtable’s key goals 
was to produce a publishable docu-
ment that discussed data and code 
sharing.

Roundtable participants identified ways of making computational research details readily available,  
which is a crucial step in addressing the current credibility crisis.

CISE-12-5-News.indd   8 05/08/10   3:38 PM



September/oCtober 2010 9

In reproducible computational re-
search, scientists make all details of 
the published computations (code and 
data) conveniently available to others, 
which is a necessary response to the 
emerging credibility crisis. For most 
computational research, it’s now tech-
nically possible, although not common 
practice, for the experimental steps—
that is, the complete software environ-
ment and the data that generated those 
results—to be published along with 
the findings, thereby rendering them 
verifiable. At the Yale Law School 
Roundtable, we sought to address this 
in practical terms by providing current 
best practices and longer-term goals 
for future implementation. 

Computational scientists can rein-
troduce reproducibility into scientific 
research through their roles as scien-
tists, funding decision-makers, and 
journal editors. Here, we discuss best 
practices for reproducible research in 
each of these roles as well as address 
goals for scientific infrastructure de-
velopment to facilitate reproducibility 
in the future.

The Scientist’s Role
Roundtable participants identified 
six steps that computational scien-
tists can take to generate reproduc-
ible results in their own research. 
Even partial progress on these rec-
ommendations can increase the level 
of reproducibility in computational 
science.

Recommendation 1: When publish-
ing computational results, including 
statistical analyses and simulation, 
provide links to the source-code (or 
script) version and the data used to 
generate the results to the extent that 
hosting space permits. Researchers 
might post this code and data on

• an institutional or university Web 
page;

• an openly accessible third-party 
archived website designed for code 
sharing (such as Sourceforge.net, 
BitBucket.org, or Github.com); or 

• on a preprint server that facilitates 
code and data sharing (such as 
Harvard’s Dataverse Network; see 
http://thedata.org).

Recommendation 2: Assign a unique 
ID to each version of released code, 
and update this ID whenever the code 
and data change. For example, re-
searchers could use a version-control 
system for code and a unique identi-
fier such as the Universal Numerical 
Fingerprint (http://thedata.org/book/
unf-implementation) for data. Such 
an identifier facilitates version track-
ing and encourages citation.8 (As an-
other example, the PubMed Central 
reference number applies to all manu-
scripts funded by the US National In-
stitutes of Health, creating a unique, 
citable digital object identifier for 
each; see http://publicaccess.nih.gov/
citation_methods.htm.)

Recommendation 3: Include a state-
ment describing the computing en-
vironment and software version used 
in the publication, with stable links 
to the accompanying code and data. 
Researchers might also include a vir-
tual machine. A VM image with com-
piled code, sources, and data that can 
reproduce published tables and figures 
would let others explore the parameters 

Yale law School Roundtable 
PaRticiPantS
Writing Group Members:

• Victoria Stodden, Information Society Project, Yale Law 
School;

• David Donoho, Department of Statistics, Stanford 
University;

• Sergey Fomel, Jackson School of Geosciences, The  
University of Texas at Austin;

• Michael P. Friedlander, Department of Computer  
Science, University of British Columbia;

• Mark Gerstein, Computational Biology and Bioinformat-
ics Program, Yale University;

• Randy LeVeque, Department of Applied Mathematics, 
University of washington;

• Ian Mitchell, Department of Computer Science,  
University of British Columbia;

• Lisa Larrimore Ouellette, Information Society Project, 
Yale Law School;

• Chris wiggins, Department of Applied Physics and  
Applied Mathematics, Columbia University. 
 
 
 

Additional Authors:

• Nicholas w. Bramble, Information Society Project, Yale 
Law School

• Patrick O. Brown, Department of Biochemistry, Stanford 
University

• Vincent J. Carey, Harvard Medical School
• Laura DeNardis, Information Society Project, Yale Law 

School
• Robert Gentleman, Director, Bioinformatics and  

Computational Biology, Genentech
• J. Daniel Gezelter, Department of Chemistry and  

Biochemistry, University of Notre Dame
• Alyssa Goodman, Harvard-Smithsonian Center for  

Astrophysics, Harvard University
• Matthew G. Knepley, Computation Institute, University 

of Chicago
• Joy E. Moore, Seed Media Group
• Frank A. Pasquale, Seton Hall Law School
• Joshua Rolnick, Stanford Medical School
• Michael Seringhaus, Information Society Project,  

Yale Law School
• Ramesh Subramanian, Department of Computer  

Science, Quinnipiac University, and Information Society 
Project, Yale Law School

CISE-12-5-News.indd   9 05/08/10   3:38 PM



N E w S

10	 Computing in SCienCe & engineering

around the publication point, examine 
the algorithms used, and build on that 
work in their own new research.

Recommendation 4: Use open licens-
ing for code to facilitate reuse, as sug-
gested by the Reproducible Research 
Standard.9,10

Recommendation 5: Use an open ac-
cess contract for published papers  
(http://info-libraries.mit.edu/scholarly/ 
mit-copyright-amendment-form) and 
make preprints available on a site 
such as arXiv.org, PubMed Central, 
or Harvard’s Dataverse Network to 
maximize access to the work. However, 
the goal of enhanced reproducibility 
applies equally to both open access 
journals and commercial publications.

Recommendation 6: To encourage 
both wide reuse and coalescence on 
broad standards, publish data and code 
in nonproprietary formats whenever 
reasonably concordant with estab-
lished research practices, opting for 
formats that are likely to be readable 
well into the future when possible. 

The Funding Agency’s Role
Funding agencies and grant reviewers 
have a unique role due to their cen-
tral position in many research fields. 
There are several steps they might 
take to facilitate reproducibility.

Recommendation 1: Establish a joint-
agency-funded archival organization for 
hosting—perhaps similar to the Protein 
Data Bank (see the “Protein Data Bank” 
sidebar)—and include a system for per-
mitting incoming links to code and 

data with stable unique identifiers. For 
example, PubMed Central could be ex-
tended to permit code and data upload 
and archiving (possibly mirrored with 
existing version-control systems).

Recommendation 2: Fund a select 
number of research groups to fully 
implement reproducibility in their 
workflow and publications. This will 
allow a better understanding of what’s 
required to enable reproducibility.

Recommendation 3: Provide leader-
ship in encouraging the development 
of a set of common definitions permit-
ting works to be marked according to 
their reproducibility status, including 
verified, verifiable, or inclusive of code 
or data.

Recommendation 4: Fund the cre-
ation of tools to better link code and 
data to publications, including the 
development of standardized unique 
identifiers and packages that allow the 
embedding of code and data within 
the publication (such as Sweave11 or 
GenePattern12).

Recommendation 5: Fund the devel-
opment of tools for data provenance 
and workflow sharing. It can often 
take researchers considerable time 
to prepare code and data for veri-
fication; provenance and workflow 
tracking tools could greatly assist in 
easing the transition to reproducibil-
ity. Examples include the UK-funded 
Taverna software package (www.
mygrid.org.uk), the University of 
Southern California’s Pegasus system 
(http://pegasus.isi.edu), Penn State  

University’s Galaxy software (http://
galaxy.psu.edu), and Microsoft’s Tri-
dent Workbench for oceanography  
(http://research.microsoft.com/enus/
collaboration/tools/trident.aspx).

The Journal Editor’s Role
Journals are key to establishing repro-
ducibility standards in their fields and 
have several options available to facili-
tate reproducibility.

Recommendation 1: Implement poli-
cies to encourage the provision of 
stable URLs for open data and code 
associated with published papers. (For 
an example, see Gary King’s draft 
journal policy at http://gking.harvard.
edu/repl.shtml.) Such URLs might be 
links to established repositories or to 
sites hosted by funding agencies or 
journals.

Recommendation 2: When scale 
permits, require the replication of 
computational results prior to pub-
lication, establishing a reproduc-
ibility review. To ease the burden on 
reviewers, publications could provide 
a server through which authors can 
upload their code and data to ensure 
code functionality before the results 
verification.

Recommendation 3: Require appro-
priate code and data citations through 
standardized citation mechanisms, 
such as Data Cite (http://thedata.org/
citation/tech). 

Several journals have implement-
ed policies that advance sharing of 
the data and code underlying their  

the PRotein data bank

One example of agency-facilitated openness is the Pro-
tein Data Bank. Created in 1971, PDB’s aim is to share 

“information about experimentally determined structures of 
proteins, nucleic acids, and complex assemblies” (see www.
pdb.org/pdb/home/home.do). PDB has become a standard 
within the structural biology community during the nearly 
40 years of effort to balance relationships among the jour-
nals, the author-scientists, and the database itself.

The PDB is part of a worldwide effort funded by a 
variety of agencies, with main hubs in the US, Japan, and 
Europe. with the rise of the web, PDB usage became more 
intimately connected with publication, first with the un-
derstanding that data were to be available within months 
or a year of publication, then—owing to the coordinated 

decisions of the editors of Nature, Science, Cell, and the 
Proceedings of the National Academy of Sciences—as a simple 
and effective precondition for publication.1 This has in turn 
enabled an entire field of statistical studies and molecular 
dynamics based on the structural data, a feat impossible 
without access to each publication’s data.

More information on Nature’s data requirement policies 
is available at www.nature.com/authors/editorial_policies/
availability.html; Science requirements are included in its 
general author information at www.sciencemag.org/about/
authors/prep/gen_info.dtl#dataavail.

Reference
1. “The Gatekeepers,” editorial, Nature Structural Biology, vol. 5, 

no. 3, 1998, pp. 165–166; www.nature.com/nsmb/wilma/
v5n3.892130820.html.
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computational publications. A promi-
nent example is Biostatistics, which in-
stituted an option in 2009 for authors 
to make their code and data available 
at publication time.13 The journal it-
self hosts the associated data and code; 
code written in a standard format will 
also be verified for reproducibility, 
and the published articled is labeled 
accordingly. Authors can choose to 
release only the paper itself or to also 
release the code, the data, or both 
data and code (making the paper fully  
reproducible), indicated as C, D, or R, 
respectively, on the title pages. The 
policy is having an impact. Since it was 
implemented, three issues with a total 
of 43 papers have been published; of 
those, four papers have been marked 
with code availability, two with data 
availability, one with both, and two as 
fully reproducible.

In addition to traditional catego-
ries of manuscript (research, survey 
papers, and so on), the ACM journal 
Transactions on Mathematical Software 
has for many years let authors submit 
under a special “Algorithm” category 
(http://toms.acm.org). Submissions 
in this category include both a manu-
script and software, which are evaluated 
together by referees. The software 
must conform to the ACM Algorithms 
Policy, which includes rules about com-
pleteness, portability, documentation, 
and structure designed “to make the 
fruits of software research accessible 
to as wide an audience as possible”  
(see www.cs.kent.ac.uk/projects/toms/ 
AlgPolicy.html). If accepted, the man-
uscript component of an algorithm 
submission is published in the tra-
ditional fashion, but flagged promi-
nently in the title as an algorithm, 
and the software becomes part of the 
AMC’s collected algorithms, which 
are available for download and subject 
to the ACM Software Copyright and 

License Agreement. Although not ap-
pearing as frequently as traditional 
research papers, algorithm articles 
still make up a significant fraction of 
published articles in the journal de-
spite the additional effort required of 
both authors and referees. In 2009, for 
example, seven out of 22 articles were 
in the algorithm category.

Geophysics, a prominent journal in 
the geosciences, created a special sec-
tion on “Algorithms and Software” 
in 2004 (http://software.seg.org).   
Authors in this section must supply 
source code, which is reviewed by the 
journal to verify reproducibility of  
the results. The code is archived on the 
website. The journal Bioinformatics 
encourages the submission of code, 
which is actively reviewed, and an op-
tion is available for letting the jour-
nal archive the software (see www. 
biomedcentral.com/bmcbioinformatics/
ifora/?txt_jou_id=1002&txt_mst_id= 
1009). Nucleic Acids Research pub-
lishes two dedicated issues annually: 
one entirely devoted to software and 
Web services useful to the biological 
community, and the other devoted to 
databases. The software is reviewed 
prior to publication and is expected 
to be well tested and functional prior  
to submission (www.oxfordjournals. 
org/our_journals/nar/for_authors/
submission_webserver.html).

Unfortunately, archived code can be-
come unusable—sometimes quickly— 
due to changes in software and plat-
form dependencies, making published 
results irreproducible. One improve-
ment here would be a system with 
a devoted scientific community that 
continues to test reproducibility after  
paper publication and maintains the 
code and the reproducibility status 
as necessary. When code is useful, 
there’s an incentive to maintain it. 
Journals can facilitate this by letting 

authors post software updates and new  
versions.

Long-Term Goals
The roundtable participants also ex-
tended their discussion of recommen-
dations beyond immediately available 
options. This section describes poten-
tial future developments, including 
ideal tools and practices that we might 
develop to facilitate reproducibility.

Goal 1: Develop version-control sys-
tems for data—particularly systems 
that can handle very large and rapidly 
changing data. Because many different  
research communities use computa-
tional tools, we should develop version- 
control systems for all aspects of  
research (papers, code, and data). Ide-
ally, these would incorporate GUIs or 
Web-based tools to facilitate their use.

Goal 2: Publish code accompanied 
by software routines that permit 
testing of the software—test suites, 
including unit testing and/or regres-
sion tests, should be a standard com-
ponent of reproducible publication. 
In addition, we should develop tools 
to facilitate code documentation. In 
the Python world, for example, the 
Sphinx machinery makes it possible 
to converge on a standard for docu-
mentation that produces consistent, 
high-quality documents in LaTeX, 
PDF, and HTML, with good math 
and graphics support that can be fully 
integrated in the development process 
(see http://sphinx.pocoo.org).

Goal 3: Develop tools to facilitate 
both routine and standardized cita-
tion of code, data, and contribution  
credits, including micro-contributions  
such as dataset labeling and code mod-
ifications, as well as to enable stable 
URL citations.

Goal 4: Develop tools for effective 
download tracking of code and data, es-
pecially from academic and established  
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third-party websites, and use these 
data in researcher evaluation.

Goal 5: Mark reproducible pub-
lished documents as such in an easily 
recognizable and accepted way.9,12,13

Goal 6: Require authors to describe 
their data using standardized ter-
minology and ontologies. This will 
greatly streamline the running of var-
ious codes on data sets and a uniform 
interpretation of results.

Goal 7: That institutions, such as uni-
versities, take on research compendia 
archiving responsibilities as a regular 
part of their role in supporting sci-
ence. This is already happening in 
several places, including Cornell Uni-
versity’s DataStar project.14,15

Goal 8: Clarify ownership issues 
and rights over code and data, includ-
ing university, author, and journal 
ownership. Develop a clear process to 
streamline agreements between par-
ties with ownership to facilitate public 
code and data release.

Goal 9: Develop deeper commu-
nities that maintain code and data, 
ensure ongoing reproducibility, and 
perhaps offer tech support to users. 
Without maintenance, changes be-
yond individual’s control (computer 
hardware, operating systems, libraries, 
programming languages, and so on) 
will break reproducibility. Reproduc-
ibility should become the responsibil-
ity of a scientific community, rather 
than rest on individual authors alone.

Novel contributions to scientific 
knowledge don’t emerge solely 

from running published code on 
published data and checking the re-
sults, but the ability to do so can be 
an important component in scientific 
progress, easing the reconciliation of 
inconsistent results and providing a 
firmer foundation for future work.

Reproducible research is best facili-
tated through interlocking efforts in 
scientific practice, publication mecha-
nisms, and university and funding 
agency policies occurring across the 
spectrum of computational scien-
tific research. To ultimately succeed, 
however, reproducibility must be em-
braced at the cultural level within the 
computational science community.16 
Envisioning and developing tools and 
policies that encourage and facilitate 
code and data release among individu-
als is a crucial step in that direction. 
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