Testimony before the US House Committee on Science, Space, and Technology.
November 19, 2013

Rayburn House Office Building, Room 2318

Aviel D. Rubin, Ph.D.

My name is Avi Rubin, and [am Professor of Computer Science at Johns Hopkins
University and a former Fulbright Scholar. I am also Technical Director of the
Information Security Institute and Director of the Health and Medical Security
(HMS) Lab at Johns Hopkins. | have been working in IT Security since 1992, and my
Ph.D. was in the area of network security and applied cryptography. Before coming
to Johns Hopkins almost 11 years ago, [spent 9 years working in the Bell systems
research labs on security issues including Web security, data privacy, and general IT
security. [am author or co-author of five books on the subject.

[am currently advising six Ph.D. students and over a dozen undergraduates, and my
lab is funded by the Office of the National Coordinator for health information
technology and by the National Science Foundation. My grants target healthcare IT
and electronic medical records security. My sponsored work does not relate in any
way to the HealthCare.gov site or any other government system in production.

From 2005 to 2011 I ran a software security consulting company that evaluated the
security of systems, including large Web deployments and backend databases.

[have been asked to comment on security issues for large Web installations in
general, and to address, specifically, security issues that need to be considered for
the HealthCare.gov Web site.

My understanding is that among other things, HealthCare.gov collects some
sensitive information from users to assess their eligibility. The site communicates
with databases held by the IRS, DHS, and SSA to verify eligibility for federal
subsidies and with third-party non-governmental entities like Experian to verify
patients’ identities. HealthCare.gov does not collect nor store Electronic Medical
Records, but it does collect whatever personal information is needed for enrollment.
This information, in the wrong hands, could potentially be used for identity theft
attacks.

There have been many highly publicized breaches of large online systems where
credit card information, social security numbers, and user passwords have been
exposed. Some of the more notable ones involved Heartland Payment Systems, T]
Maxx, and most recently Adobe. Rarely does a week go by without a major media
story about a new data breach. Anytime valuable, sensitive information is managed
through a user-facing Web interface, there is a risk of exposure, and attackers are
constantly growing in sophistication, creativity and resources. As one of the largest
and most complex undertakings in the online space, HealthCare.gov faces the same
security challenges as other online sites such as airline reservation systems, online
banks and retailers, and large social media sites.

It has been widely publicized that HealthCare.gov has had a rocky deployment. To a
software engineer, this is not surprising. The system is very large, and it
interoperates with many different Web sites and back end systems. The success of
HealthCare.gov depends not only on the software and servers that run the front end
of the site, but also on every one of the organizations with which it shares data on
the back end. Furthermore, HealthCare.gov was deployed with a hard deadline for
going live, and there were indications that the system was not ready, as the deadline
approached.

When software systems run behind schedule, the temptation is to increase the
manpower to try to catch up. However, it is a well-known mantra in software
engineering that adding people to a late software project is likely to make it later. A
famous book by the software pioneer Dr. Fred Brooks titled The Mythical Man-
Month captures this idea, and is considered one of the all time classic books on the
development and deployment of large software products. Once a project falls behind
schedule, sticking to a hard deadline can result in a faulty system that is not
properly tested. Furthermore, systems that may appear to work well in the lab,
often fail when scaled up to a large number of users in the field. Stress testing a
large-scale system requires simulating the actual environment in which the
software will run when hundreds of thousands of users simultaneously access it.
Such simulations often do not properly test the system under a realistic load.

The issue of scale is an important one. Most large, consumer-facing Web-based
rollouts happen in phases. For example when Google introduces a new service, they
initially offer it to a select group of users. As bugs are ironed out and problems are
resolved, the new functionality is enabled for more users. It is an iterative process,
and there are always issues to resolve. One of the biggest mistakes of
HealthCare.gov was the decision to roll it out all on one day. That is not the way
large systems go live in practice.

One of the basic principles of security is that a system’s security is inversely
proportional to its complexity; that is, the more complex a system is, the more
numerous vulnerabilities in that system will be. In other words, “Keep it simple” is
the best advice. When a system must be complex by its nature, such as is the case for
HealthCare.gov, then a good way to address security in the design is to focus on
well-defined interfaces among components. This is part of building in security from
the beginning.

One cannot build a system and add security later any more than you can construct a
building and then add the plumbing and duct work afterwards. That said, in practice,
software systems evolve, and as a system changes, new security considerations arise.
In practice, systems require some post-production “bolting on” of security features
and retrofitting security solutions despite any efforts to build security in at the
outset. Ongoing vigilance and response are needed to properly maintain a secure
Web installation.

[have followed news reports of some security problems with HealthCare.gov. As far
as I can tell, so far all of the security problems that have been publicized were easy
to fix and have been remedied. Assessing whether there are any deep, architectural
security flaws will require an in-depth design review by security specialists. In the
meantime, [have several recommendations that I list at the end of this testimony on
how to maximize the security of HealthCare.gov.

Maintaining a secure Web site is not easy and requires ongoing maintenance,
administration and expertise. That said, there are many Web sites that operate
successfully and which have not, to my knowledge, suffered any significant breaches.
Given the large number of interoperating systems and the sensitivity of the data that
it handles, I classify HealthCare.gov as a high-maintenance system from a security
perspective. It cannot be deployed and left alone. High quality system
administrators are needed to keep up with software patches from vendors, to
respond to incidents, and to monitor the systems for suspicious incidents. A
contingency plan should be developed for every conceivable incident, and a
reporting system should be put in place so that responses can occur in a timely
fashion.

[believe that if security best practices are adhered to, if the system was architected
with proper security and well designed interfaces on the back end, and if my
recommendations below are followed, that it is possible for a site with the
objectives of HealthCare.gov to achieve the same level of security as some of the
well-known popular Web sites that people use regularly on the Internet to shop,
bank, book travel, keep up with their friends, and otherwise manage their lives.
There will always be the potential for security incidents, but the risks can be
minimized with proper design, management and administration.

Here are my recommendations for securing HealthCare.gov:

- Outside, independent experts should review the security of the system annually,
including design review, code review and red team exercises

- Security reviews should focus on the interfaces among the components and
across systems.

- User authentication mechanisms should be reviewed, and two-factor
authentication should be employed wherever practical.

- Security reviews should check for known standard vulnerabilities such as SQL
injection attacks, sanitization of user inputs, Cross Site Scripting vulnerabilities,
and other standard checks.

- Data at rest should be encrypted, and keys should be cleared from memory when
they are not in use.

- Implement mandatory incident reporting, even of suspected and unconfirmed
incidents, and contingency plans should be designed for conceivable scenarios.

The opinions expressed herein are my own and do not necessarily reflect the views
of The Johns Hopkins University. Thank you for the opportunity to testify before this
committee, and I look forward to answering your questions.

