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Integrated Assessment Models (IAMs) require parameterization of both economic and climatic
processes. The latter includes Equilibrium Climate Sensitivity (ECS), or the temperature re-
sponse to doubling CO2 levels, and Ocean Heat Uptake (OHU) efficiency. ECS distributions in
IAMs have been drawn from climate model runs that lack an empirical basis, and in Monte
Carlo experiments may not be constrained to consistent OHU values. Empirical ECS estimates
are now available, but have not yet been applied in IAMs. We incorporate a new estimate of the
ECS distribution conditioned on observed OHU efficiency into two widely used IAMs. The
resulting Social Cost of Carbon (SCC) estimates are much lower than those from models based
on simulated ECS parameters. In the DICE model, the average SCC falls by approximately 40–
50% depending on the discount rate, while in the FUND model the average SCC falls by over
80%. The span of estimates across discount rates also shrinks substantially.

Keywords: Social cost of carbon; climate sensitivity; ocean heat uptake; carbon taxes; integrated
assessment models.

1. Introduction

Integrated Assessment Models (IAMs) emerged in the 1990s and have become central
to the analysis of global climate policy, especially for estimating the Social Cost of
Carbon (SCC)1 or the marginal damages of an additional unit of carbon dioxide (CO2)
emissions. A particularly influential application has been through the US InterAgency
Working Group (IWG, 2010, 2013) which estimated SCC rates for use in US climate
and energy regulations. IAMs operate at a high level of abstraction and require extensive

1Various reviews of IAMs exist, each highlighting or criticizing different aspects, such as Parson and Fisher-Vanden
(1997), Stanton et al. (2009) and Pindyck (2013).
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parameterization of both climatic and economic processes. Among the economic para-
meters, the most influential are the discount rate and the coefficients of the damages
function (Marten, 2011). A key climate parameter is Equilibrium Climate Sensitivity
(ECS), which represents the long term temperature change from doubling atmospheric
CO2, after allowing sufficient time for the deep ocean to respond to surface warming. It is
either included explicitly or implicitly in the IAM functions determining temperature
responses to CO2 accumulation.

Optimal SCC estimates depend strongly on the damage function, which in turn is
strongly influenced by ECS (e.g., Webster et al., 2008; Ackerman et al., 2010; Wouter
Botzen and vanden Bergh, 2012). ECS uncertainty has multiple dimensions, beginning
with the wide range of point estimates within the major IAMs (van Vuuren it et al.,
2011). The interaction between ECS and ocean heat uptake (OHU) efficiency is an
important but largely overlooked source of uncertainty because it affects the time-to-
equilibrium which affects SCC estimates via the role of discounting (Roe and Bauman,
2013). A number of authors have studied how quickly ECS uncertainty may be re-
duced over time via Bayesian learning as new information become available (Kelly and
Kolstad, 1999; Leach, 2007). Interestingly, Webster et al. (2008) find that learning is
slowest in the low ECS case while Urban it et al. (2014) find it slowest in the high ECS
case, with the difference being due to the role of OHU efficiency.2

IWG (2010, 2013) represented ECS uncertainty by modifying three standard IAMs3

to include a Probability Density Function (PDF) parameterized to fit a range of esti-
mates from climate modeling simulations, which then gave rise to a distribution of
marginal damages. The choice of ECS distribution can strongly influence the average
SCC if it has a large upper tail, which pulls up both the median and mean values. The
IWG used a PDF from Roe and Baker (2007, herein RB07) which does have a long
upper tail. RB07 was an exploration of why uncertainties over ECS have not been
reduced despite decades of effort, with the explanation centering on the amplified
effect of uncertainties in the value of the climate feedback parameter f on final tem-
peratures, due to its position in the denominator of the equation for ECS. To illustrate
the point they fitted a curve to a small selection of ECS estimates published between
2003 and 2007, yielding an ECS curve that had a long upper tail even though there was
no unbounded source of uncertainty in the underlying model.

The reliance by IWG on RB07 is questionable for two reasons. First, as Roe and
Bauman (2013) pointed out, the distribution in RB07 was not directly applicable in the
context of IAM simulations because the wideness of the tails is a function of the time
span to equilibrium, which depends heavily on the assumed OHU efficiency, and the

2The representation of uncertainty itself can introduce uncertainty. Crost and Traeger (2013) argue that averaging
Monte Carlo runs of deterministic models rather than using a Stochastic Dynamic Programming (SDP) framework
yields inaccurate and potentially incoherent results. But Traeger (2014) finds that applying SDP in the DICE framework
causes problems of dimensionality which necessitate introducing new simplifications elsewhere, including in the
representation of OHU efficiency.
3The three IAMs are called DICE (Nordhaus, 1993), FUND (Tol, 1997) and PAGE (Hope, 2006).

K. Dayaratna, R. McKitrick & D. Kreutzer

1750006-2

C
lim

. C
ha

ng
e 

E
co

n.
 2

01
7.

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 W

A
SH

IN
G

T
O

N
 U

N
IV

E
R

SI
T

Y
 o

n 
06

/3
0/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



time span associated with the fat upper tail is not relevant to SCC calculations. In the
real world, CO2 doubling is not instantaneous, the transition to a new equilibrium state
is exceedingly slow, and the oceans absorb huge amounts of heat along the way depending
on OHU efficiency. In simplified climate models, time-to-equilibrium increases with the
square of ECS, so an upward adjustment of the ECS parameter outside the range con-
sistent with the assumed OHU efficiency parameter can yield distorted present value
damage estimates. In particular, the higher the ECS, the slower the adjustment process,
making the fat upper tail of realized warming physically impossible for even 1000 years
into the future (Roe and Bauman, 2013, p. 653). An ECS distribution applicable to the real
world must therefore be conditioned on a realistic OHU efficiency estimate.

Second, RB07 predated a large literature on empirical ECS estimation. As was
common at the time, they fitted a distribution to a small number of simulated ECS
distributions derived from climate models. It is only relatively recently that sufficiently
long and detailed observational data sets have been produced to allow direct estimation
of ECS using empirical energy balance models. A large number of studies have
appeared since 2010 estimating ECS on long term climatic data (Otto et al., 2013;
Ring et al., 2012; Aldrin et al., 2012; Lewis, 2013; Lewis and Curry, 2015; Schwartz,
2012; Skeie et al., 2014; Lewis, 2016). This literature has consistently yielded median
ECS values near or even below the low end of the range taken from climate model
studies. General Circulation Models (GCMs) historically yielded sensitivities in the
range of 2.0–4.5�C, and (based largely on GCMs) RB07 yields a central 90% range of
1.72–7.14�C with a median of 3.0�C and a mean of 3.5�C (see comparison table
in IWG, 2010, p. 13). But the median of recent empirical estimates has generally been
between 1.5�C and 2.0�C, with 95% uncertainty bounds below the RB07 average.

This inconsistency has attracted growing attention in the climatology literature
(Kummer and Dessler, 2014; Marvel et al., 2015). It is also discussed in the docu-
mentation for Nordhaus’ DICE model4 where it is cited as a reason for a slight downward
revision in the ECS parameter. However, that change was based on early evidence pub-
lished prior to 2008, whereas all the studies discussed herein were published after 2010.

For the most part, however, the inconsistency between empirical and model-
simulated ECS estimates has been ignored in the climate economics literature. But, as
we will show herein, it has potentially massive policy implications. We replicate the
IWG’s SCC estimates using the EPA’s modified versions of two IAMs (FUND and
DICE),5 then we re-do the calculations using an observational ECS distribution from
a recent study (Lewis and Curry, 2015, herein LC15) that controls for observed OHU
efficiency, thereby yielding an empirically constrained climate sensitivity distribu-
tion. The resulting SCC values drop dramatically compared to those reported in the
IWG (2010, 2013). Using DICE with the model-based RB07 ECS distribution at a
3% discount rate yields a mean SCC for the year 2020 of $37.79, in line with the

4See http//aida.wss.yale.edu/�nordhaus/homepage/documents/DICE Manual 100413r1.pdf, pp. 17–18.
5We did not use a third model, PAGE, because its code is unavailable for independent usage.
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IWG estimates that currently guide US policymaking. Substituting the empirical ECS
distribution from LC15 yields a mean 2020 SCC of $19.66, a drop of 48%. The same
exercise using FUND yields a mean SCC estimate of $19.33 based on RB07 and
$3.33 based on the LC15 parameters — an 83% decline. Furthermore, the probability
of a negative SCC (implying CO2 emissions are a positive externality) jumps
dramatically using an empirical ECS distribution. Using the FUND model, which
allows for productivity gains in agricultural and forestry from higher temperatures
and elevated CO2, under the RB07 parameterization at a 3% discount rate there is
only about a 10% chance of a negative SCC through 2050, but using the LC15
distribution, the probability of a negative SCC jumps to about 40%. Remarkably, in
the FUND model, replacing simulated climate sensitivity values with an empirical
distribution calls into question whether CO2 is even a negative externality. The lower
SCC values also cluster more closely together across different discount rates,
diminishing the importance of this parameter.

We chose the LC15 distribution of ECS because of its explicit treatment of OHU
efficiency. A higher value of OHU efficiency implies more heat has been sequestered in
the oceans over the past century and hence a greater divergence between the historical
surface climate record and the total amount of warming that will ultimately occur (Roe
and Bauman, 2013). Consequently, estimates of ECS for use in real-world policy
simulations need to take into account information on OHU efficiency as well as CO2

forcing and temperature records. This is the approach taken in LC15. They used the
1750–2011 forcing and OHU estimates from the then-most recent IPCC report (IPCC,
2013), yielding a median ECS of 1.64�C and a 5–95% uncertainty range of 1.05–
4.05�C. This is in line with empirical estimates from Otto et al. (2013), Ring et al.
(2012), Aldrin et al. (2012) and Lewis (2013), but is in clear contrast to the IWG
parameterization using RB07. The central value in LC15 falls below the 5% lower
bound of the ECS distribution used in IWG (2010, 2013). Not surprisingly, this implies
that the corresponding SCC estimates form a lower and tighter distribution.6

2. SCC Calculations Using Empirical Parameters

We obtained the code for DICE and FUND7 as used for the IWG (2010, 2013) studies
from the US Environmental Protection Agency. We first replicated the SCC estimates
that would have been used in IWG (2013) from both the DICE and FUND models

6The distinction is not strictly between empirical and model-simulated estimates. The RB07 distribution is derived from
a simple feedback model fitted to model-derived ECS distributions and so is reasonably labeled ‘simulated’. But the
LC15 estimate relies on observational as well as some model-generated data, since forcing series are not directly
observable and must be simulated. For simplicity however we refer to it as an empirical estimate since it is based on and
constrained by observations as much as is feasible.
7Model authors’ source code is available at http//www.econ.yale.edu/�nordhaus/homepage/(DICE) and http:www.
fund-model.org/(FUND). We are grateful to the EPA for providing us with the MATLAB code they used which contains
the modifications for the IWG analysis.
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based on the RB07 ECS distribution. The damage paths are contingent on the emis-
sions scenarios so five scenarios are used and the results are averaged.8 As we did not
include the PAGE model in our work (due to the unavailability of the code) we cannot
directly compare our results with the IWG tables since they are averaged over all three
models. Table A5 in IWG (2013) lists separate results for FUND and DICE for 2020
and we were able to check our results against those. Table 1 shows the DICE and
FUND SCC estimates for 2020 compared with our replications (“Repl”) for three
discount rates, demonstrating that we have statistically reproduced the IWG results.

2.1. DICE model

Table 2 shows the mean SCC estimates for four discount rates, applying the RB07 and
LC15 ECS distribution to the DICE model. The final row shows the percentage change
for the 2020 estimates (all years exhibit about the same percentage changes). Under the
widely used RB07 distribution, the SCC ranges from $4.02 to $87.70 depending on the

8The scenarios are called Image, Merge Optimistic, Message, MiniCAM and 5th Scenario. Four of the five are
business-as-usual scenarios ending in CO2 concentrations between 612 and 889 parts per million. The fifth is based
either on an assumption of aggressive policy measures or more optimistic assumptions about technological change that
yield an ending concentration of 550 parts per million. See http://sites.nationalacademies.org/cs/groups/dbassesite/
documents/webpage/dbasse 169500.pdf p. 8.

Table 1. Replication of IWG (2013) SCC estimates for DICE and
FUND models for 2020, under three discount rate assumptions.
Replications done herein denoted “Repl”.

2.5% 3.0% 5.0%

IWG Repl IWG Repl IWG Repl

DICE $57 $57 $38 $38 $12 $12
FUND $33 $33 $19 $19 $3 $3

Table 2. Mean SCC estimates by year under four discount rates from the DICE model, for both
the simulated (RB07) and empirical (LC15) ECS distributions. Last row shows the percent
change as of 2020.

Discount rates Mean SCC–DICE model

Using simulated ECS Using empirical ECS

2.50% 3.00% 5.00% 7.00% 2.50% 3.00% 5.00% 7.00%

2010 $46.58 $30.04 $8.81 $4.02 $23.62 $15.62 $5.03 $2.48
2020 $56.92 $37.79 $12.10 $5.87 $28.92 $19.66 $6.86 $3.57
2030 $66.53 $45.15 $15.33 $7.70 $33.95 $23.56 $8.67 $4.65
2040 $76.96 $53.26 $19.02 $9.85 $39.47 $27.88 $10.74 $5.91
2050 $87.70 $61.72 $23.06 $12.25 $45.34 $32.51 $13.03 $7.32
% Chg at 2020 �49.2% �48.0% �43.3% �39.2%

Empirically Constrained Climate Sensitivity and the SCC
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discount rate and the future year. Under the LC15 parameter distributions the SCC
ranges from $2.48 to $45.34. For the year 2020 the largest proportional drop — nearly
50% — is observed in the low discount rate case. The high discount rate case yields a
drop of just under 40%.

These reductions are primarily due to the LC15 distribution containing a smaller
upper tail and therefore greater probability mass at lower temperatures. Table 3 shows
the average standard deviations of the two sets of estimates. The largest reduction,
slightly over 25%, again occurs at the lowest discount rate, compared to only 7% at the
highest discount rate. The LC15 distribution provides uniformly more certainty for the
SCC for all years and all discount rates. These results are in line with previous research
performing similar computations by applying the Otto et al. (2013) ECS distribution in
the DICE model (Dayaratna and Kreutzer, 2013).

2.2. Fund model

Tables 4 and 5 present the same results as Tables 2 and 3, but for the FUND model. A
number of differences are notable. The mean SCC estimates are lower under both
parameterizations, and under the empirical LC15 coefficients they are, on average,
mostly negative at 5% or higher discount rates out past 2030. A negative value implies
that carbon dioxide emissions are a positive externality, so that an optimal policy
would require subsidizing emissions. Also, in contrast to the DICE model, use of the
LC15 coefficients increases the average standard deviation, indicating higher uncer-
tainty compared to the RB07 case.9 The increased uncertainty includes a much larger
lower tail, implying a larger probability of a negative SCC. DICE is constrained to a
transformed quadratic global damage function such that damages cannot be negative

Table 3. Average standard deviation of SCC estimates by year under four discount rates from the
DICE model, for both the simulated (RB07) and empirical (LC15) ECS distributions. Last row shows
the percent change as of 2020.

Discount rates Average standard deviation–DICE model

Using simulated ECS Using empirical ECS

2.50% 3.00% 5.00% 7.00% 2.50% 3.00% 5.00% 7.00%

2010 $25.91 $15.01 $3.30 $1.19 $19.18 $11.54 $2.78 $1.12
2020 $31.51 $18.91 $4.62 $1.81 $23.48 $14.56 $3.84 $1.67
2030 $37.01 $22.90 $6.03 $2.50 $27.63 $17.52 $4.90 $2.23
2040 $42.83 $27.44 $7.77 $3.40 $32.32 $20.81 $6.11 $2.92
2050 $46.31 $30.12 $9.33 $4.25 $36.83 $23.98 $7.46 $3.64
% Chg at 2020 �25.5% �23.0% �16.9% �7.8%

9ECS is the only stochastic parameter in DICE so the reduction in variance between RB07 and LC15 leads auto-
matically to a corresponding reduction in the SCC variance. By contrast, dozens of parameters in FUND are stochastic
so reduction in the mean and variance of ECS interacts in a more complex way with the rest of the model. The net
effect, as shown is to increase the spread of SCC estimates.
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regardless of temperature change. FUND allows the gains for regions that benefit from
moderate warming to potentially outweigh the costs in other regions so some scenarios
can yield negative net costs at the global level. Table 6 shows that, under the RB07
parameterization, at a 2.5% discount rate the probability of carbon dioxide emissions
being a positive externality is only 7.1% in 2050. But using the LC15 parameters this
probability jumps to over 35%.

Figure 1 shows normalized histograms of SCC calculations for the Merge Opti-
mistic scenario at 2.5% discounting as of 2030. The height of each bar represents the
probability of choosing an observation within a particular bin interval, and the sum of
the heights across all of the bars is equal to 1. The bin width for RB07 is 5, the bin width
of LC15 is 3. Comparing the top and bottom panels we see that model simulation of
ECS introduces uncertainty not found in observations by creating an extended upper tail.

Table 4. Mean SCC estimates by year under four discount rates from the FUND model, for both
the simulated (RB07) and empirical (LC15) ECS distributions. Last row shows the percent change
as of 2020.

Discount rates Mean SCC–FUND model

Using simulated ECS Using empirical ECS

2.50% 3.00% 5.00% 7.00% 2.50% 3.00% 5.00% 7.00%

2010 $29.69 $16.98 $1.87 �$0.53 $5.25 $2.78 �$0.65 �$1.12
2020 $32.90 $19.33 $2.54 �$0.37 $5.86 $3.33 �$0.47 �$1.10
2030 $36.16 $21.78 $3.31 �$0.13 $6.45 $3.90 �$0.19 �$1.01
2040 $39.53 $24.36 $4.21 $0.19 $7.02 $4.49 �$0.18 �$0.82
2050 $42.98 $27.06 $5.25 $0.63 $7.53 $5.09 $0.64 �$0.53
% Chg at 2020 �82.2% �82.8% �118.5% �197.3%a

aChange from �$0.37 to �$1.10 is, arithmetically, a positive number, but is shown here as
negative to indicate that it is a change to a larger negative magnitude.

Table 5. Average standard deviation of SCC estimates by year under four discount rates from the
FUND model, for both the simulated (RB07) and empirical (LC15) ECS distributions. Last row shows
the percent change as of 2020.

Discount rates Average standard deviation – FUND model

Using simulated ECS Using empirical ECS

2.50% 3.00% 5.00% 7.00% 2.50% 3.00% 5.00% 7.00%

2010 $64.24 $31.45 $5.19 $2.24 $67.60 $42.54 $8.07 $2.52
2020 $70.66 $35.68 $6.28 $2.79 $80.17 $52.61 $11.27 $3.51
2030 $77.28 $40.24 $7.48 $3.40 $93.86 $64.26 $15.69 $5.02
2040 $84.05 $45.14 $8.78 $4.05 $108.03 $77.23 $21.75 $7.37
2050 $90.75 $50.31 $10.22 $4.76 $121.20 $90.55 $29.76 $11.04
% Chg at 2020 þ13.5% þ47.4% þ71.2% þ25.8%

Empirically Constrained Climate Sensitivity and the SCC
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Figure 1. Frequency histograms of SCC computations in FUND under different ECS distri-
butional assumptions. Top panel: Using MERGE ‘Optimistic’ scenario with 2.5% discount rate,
as of 2030, SCC rate on horizontal axis and number of times observed on vertical axis, ECS
follows Roe–Baker (2007) distribution. Bottom panel: same but ECS follows Lewis–Curry
(2015) distribution.

Table 6. Probability of a negative SCC under four discount rates in the FUND model.

Discount rates Probability of negative SCC – FUND model

Using simulated ECS Using empirical ECS

2.50% 3.00% 5.00% 7.00% 2.50% 3.00% 5.00% 7.00%

2010 0.087 0.121 0.372 0.642 0.416 0.450 0.601 0.730
2020 0.084 0.115 0.344 0.601 0.402 0.432 0.570 0.690
2030 0.080 0.108 0.312 0.555 0.388 0.414 0.536 0.646
2040 0.075 0.101 0.282 0.507 0.371 0.394 0.496 0.597
2050 0.071 0.093 0.251 0.455 0.354 0.372 0.456 0.542
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These results are in line with previous simulations using other ECS distributions
that have smaller upper tails than RB07, namely Otto et al. (2013) and Lewis (2013);
see Dayaratna and Kreutzer (2013). Figure 2 summarizes the calculations by com-
paring the mean of DICE- and FUND-computed SCC values from 2010 to 2050 at a
3% discount rate using the simulated (black, upper line) and the empirical (gray, lower
line) ECS values. As of 2050 the empirically constrained value ($18.80) is still below
the 2010 value ($23.51) based on simulated ECS.

3. Discussion and Conclusion

IAMs play an important role in climate policy analysis. They rely on a number of
influential parameter choices, such as ECS. Model-based ECS distributions are mis-
leading for use in SCC calculations because they are not conditioned on OHU effi-
ciency rates relevant to IAM timelines and because they are skewed upwards relative to
the current empirical evidence. The model-observational discrepancy in ECS estima-
tion is not attributable simply to a specific empirical methodology, as similar results
have been found by Otto et al. (2013), Ring et al. (2012), Aldrin et al. (2012) and
others using a variety of methods. Nor is it an artifact of selecting a specific estimation
period, as LC15 showed their results were robust to numerous variations on the choice
of base and final periods (LC15, Table 4).

We incorporated the Lewis and Curry (2015) ECS distribution, which is condi-
tioned on updated forcings and OHU data, into the DICE and FUND models. This
reduces the estimated SCC in both, regardless of discount rates. Using a 3% discount
rate and the RB07 ECS distribution, DICE yields an average SCC ranging from about
$30 to $60 between now and 2050, but this falls to the $15 to $33 range using the
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Empirical ECS (LC15)

Figure 2. SCC Estimates, 2010–2050, average of DICE and FUND models applying a 3%
discount rate. Top (black) line using simulated ECS parameter distribution. Bottom (gray) line
using empirical ECS parameter distribution.
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LC15 ECS estimate. The corresponding average SCC in FUND falls from the $17 to
$27 range to the $3 to $5 range. Moreover, FUND which takes more explicit account
of potential regional benefits from CO2 fertilization and increased agricultural pro-
ductivity yields a substantial (about 40%) probability of a negative SCC through the
first half of the 21st century, putting into question whether CO2 emissions are even a
social cost.

A further way in which use of empirically constrained parameters reduces uncer-
tainty is the shrinking of the SCC range across discount rates. In the DICE model
under the RB07 parameterization, the mean SCC estimates span over $45 as of 2010
depending on choice of discount rate, with the span rising to over $85 as of 2050. This
span shrinks to the $23 to $64 range under the LC15 parameterization. Using the
FUND model, the uncertainty range associated with the choice of discount rate is from
about $30 to $43 under the RB07 parameterization, falling to $5 to $8 range under the
LC15 parameterization. Thus, use of well-constrained empirical parameters makes a
substantial contribution also to reducing uncertainty associated with the choice of
discount rate.
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