

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION CARIBBEAN FISHERY MANAGEMENT COUNCIL

270 MUÑOZ RIVERA AVE. STE 401 SAN JUAN PR 00918-1903

May 14, 2021

Dr. Paul N. Doremus Assistant Administrator for Fisheries Office no Assistant Administrator NOAA Fisheries Service 1315 East West Highway Silver Spring, MD 20910

Dear Dr. Doremus,

Herewith, we are pleased to submit the comments from the Caribbean Fishery Management Council (CFMC) on E.O. 14008, Section 216(c).

There is a need for cooperative research to improve the science for the monitoring and development of fishery management plans in the US Caribbean. It is imperative to close the data gaps in life history parameters of species under the management units. The lack of these data creates a challenge for stock assessment to determine status of the local fisheries. In addition, we need better data on habitats that are essential for these species. The betterment of the data collection and analysis will be beneficial for not only assessing climate change (including hurricane effects) and resilience, but also for carrying out our fisheries management mandate under the MSA.

Is important to study the oceanographic connectivity of shared fishery resources throughout the US Caribbean to the Southeast of the United States. For example, the spiny lobster fishery is a shared and economically important resource throughout the Wider Caribbean including the USA, where climate change may be affecting recruitment and the overall population of Caribbean spiny lobster (*Panulirus argus*) throughout its range.

Connectivity at depth, where the economically important deep-water snapper fishery (e.g., queen snapper, *Etelis oculatus*) takes place, is an unknown. Collaborative research with commercial fishers is yielding temperature-salinity measurements that may well be indicative of the depth at which climate change is impacting fisheries. These fisheries occur at more than 300 meters, under the influences of different water masses. Such studies should be continued by allocating funds to these investigations.

There is a need to continue and expand the monitoring and further studies of climate change impacts on coral reefs and coral refugia, including mesophotic and deep-water corals that constitute the essential fish habitats for the tropical species in the US Caribbean.

We recommend the development of programs to offer alternatives to the fishers to fish underutilized species and to promote the market of these species among the local consumers. This will alleviate the pressure on species suffering overfishing which also are being impacted by climate change, e.g., changes in temperature and salinity.

It is important to also begin to study and monitor species that might not be affected by climate change to identify those that might be resilient to climate change that could serve as the basis for the fisheries of the future.

Sincerely,

Marcos Hanke, CFMC Chair