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Illicitly manufactured fentanyl and its analogs (i.e., fentanyl-related compounds) have flooded the street drug 
market in recent years and the continuing rise in opioid-related overdose deaths in the United States (U.S.) is now 
attributed primarily to these compounds. In response to this crisis, the U.S. Drug Enforcement Administration 
(DEA) enacted a 2-year emergency class-wide ban on fentanyl-related compounds by temporarily placing them 
into Schedule I of the Controlled Substances Act, meaning that these compounds have high abuse potential but no 
approved therapeutic use (Docket No. DEA-476 21 CFR Part 1308; Federal Register Vol 83, No. 25, February 6, 
2018). The initial temporary class-wide scheduling of fentanyl-related compounds was re-authorized on February 
6, 2020 and will remain in effect until May 6, 2021. While this action is understandable from a law enforcement 
perspective because it theoretically will make it easier to prosecute those who illicitly manufacture these sub-
stances, it is likely to have several unintended consequences from a scientific and medical perspective that may 
hamper our ability to combat the opioid crisis in the long run. The current paper describes these unintended 
consequences. The main problem with class-wide bans is that potentially thousands of compounds are defined 
solely by their chemical structures without regard for their pharmacological activity. As such, an antagonist (i.e., 
a medication that could be used to reverse an overdose but would not produce a drug “high”) could be 
mistakenly included in the class-wide ban. Another unintended consequence of a class-wide ban on synthetic 
fentanyl-like compounds is that the regulatory burden may complicate the development of novel medical in-
terventions such as vaccines and monoclonal antibodies for treating opioid use disorders (OUD) and preventing 
fentanyl-related overdoses. There is much that we do not understand about how to most effectively treat 
fentanyl-related overdoses and OUD so any regulatory effort hindering research in this area will be counter-
productive in the long term.   

1. Introduction 

Approximately 36 million people worldwide suffer from a substance 
use disorder (SUD), but across all of the drug classes, non-therapeutic (i. 
e., recreational) use of opioids is associated with the most harm: 80% of 
“healthy” lives lost as a consequence of disability and premature death 
related to SUDs have been attributed to opioids (World Drug Report, 
2020). The United States (U.S.) in particular is experiencing an un-
precedented increase in illicit use of opioids and its associated morbidity 
and mortality. During the 12-month period ending in May 2020, over 
81,000 drug overdose (OD) deaths occurred in the U.S., which is “the 
largest number of drug overdoses for a 12-month period ever recorded” 
(Network, 2020). These deaths were driven primarily by illicitly man-
ufactured fentanyl. It has been estimated that at least 50% of fatal ODs 
involve fentanyl, which is often encountered as a standalone product, an 
adulterant in heroin, or an ingredient in counterfeit pain medications 
(Jannetto et al., 2019; Han et al., 2019). Fentanyl is a prescribed 
medication, used for both anesthesia and analgesia, that acts as a μ 

opioid receptor (μOR) agonist and is 50- to 100-times more potent than 
morphine. Fentanyl encountered in recreational drug markets is not a 
diverted pharmaceutical product, rather it is illicitly manufactured and 
trafficked over the Internet and by other channels. Of great concern to 
the medical research community is that our tools for treating opioid use 
disorder (OUD) and reversing opioid OD were developed before the 
emergence of highly potent illicitly manufactured fentanyl in the rec-
reational drug market, so new approaches may be needed to address 
this challenge. 

2. Medication development challenges 

Several medications are available and have been used successfully 
for treating OUD, including methadone, buprenorphine (Ling and 
Wesson, 2003; Johnson et al., 1992, Johnson et al., 2000), and 
naltrexone (Comer et al., 2006; Krupitsky et al., 2011, Krupitsky et al., 
2012, Krupitsky et al., 2013; DeFulio et al., 2012; Everly et al., 2011). 
Despite the clear clinical utility of these medications, approximately half 
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of the patients who initiate medication will relapse and/or drop out of 
treatment within 6 months (Krupitsky et al., 2012; DeFulio et al., 2012; 
Soyka et al., 2008). Thus, there is a substantial need for improving the 
effectiveness of these medications, given the high relapse rates. 

The introduction of fentanyl and its analogs (i.e., fentanyl-related 
compounds) to the street supply of illicit opioids complicates an 
already difficult-to-treat disorder because it is not clear whether the 
approved treatment medications can reduce use of these drugs as 
effectively as they reduce the use of heroin and prescription opioids such 
as oxycodone. A number of preclinical studies have demonstrated that 
fentanyl is a highly potent opioid with a receptor pharmacology that 
differs in some ways from other opioids (Torralva et al., 2020; Torralva 
and Janowsky, 2019; Comer and Cahill, 2019). Multiple studies con-
ducted in different species have demonstrated that opioid agonist 
maintenance or irreversible antagonist administration is less effective in 
blocking the effects of higher efficacy agonists, like fentanyl, compared 
to intermediate efficacy agonists, like heroin or morphine (Walker and 
Young, 2001, 2002; Winger and Woods, 2001; Barrett et al., 2001; 
Walker et al., 1995, 1998; Smith and Picker, 1998; Pitts et al., 1998; 
Duttaroy and Yoburn, 1995; Paronis and Holtzman, 1992, Paronis and 
Holtzman, 1994; Young et al., 1991). In addition, recent pharmacoki-
netic studies suggest that fentanyl clearance is slower than other opioids 
(Huhn et al., 2020), and withdrawal symptoms following discontinua-
tion of fentanyl use are more severe when compared to heroin and other 
prescription opioids (Neimark, 2020), which may necessitate new stra-
tegies for transitioning patients with OUD onto buprenorphine or 
naltrexone. Further research is clearly needed to assess the utility of 
approved medications for treating OUD in patients who are predomi-
nantly using fentanyl. The development of new medications and 
treatment approaches is also critically needed to address the shift in the 
illicit opioid supply toward fentanyl. 

In addition to investigating novel approaches for treating OUD in 
patients predominantly using fentanyl, new strategies for reversing 
fentanyl-related ODs are also critically needed. Naloxone is a potent, 
short-acting medication that blocks opioid receptors, including μORs, 
which are involved in both therapeutic and adverse effects of opioids. 
Naloxone was first approved by the Food and Drug Administration 
(FDA) in 1971 for treating opioid OD, where it is used in both emergency 
rooms and outside of hospitals by medically trained personnel to reverse 
opioid-induced respiratory depression, which is the primary cause of 
death due to opioid OD (White and Irvine, 1999). While naloxone binds 
to ORs, it does not activate them (i.e., it acts as a receptor antagonist) 
and does not produce any subjective “high” or other desirable effect 
from a drug user's perspective, so the risk of illicitly using naloxone itself 
is non-existent. The antagonist effects of naloxone are evident within 5 
minutes after administration and its effectiveness at commonly pre-
scribed doses can last 45 to 90 minutes. It is relatively ineffective orally, 
so it is typically administered intravenously or intramuscularly and 
more recently, intranasally (Merlin et al., 2010; Kerr et al., 2009; Kelly 
et al., 2005). It is important to note that naloxone administration to 
opioid-dependent patients can induce withdrawal symptoms, which can 
be severe (Neale et al., 2020). 

Non-fatal and fatal opioid ODs have increased substantially over the 
past three decades. While provisional data suggest that the number of 
opioid ODs started to level off in 2019, they are again increasing, as 
noted above, and remain at alarming levels. It has been estimated that 
since the beginning of the COVID-19 pandemic due to the novel coro-
navirus SARS-CoV-2, suspected ODs increased 18% nationwide (http:// 
www.odmap.org/Content/docs/news/2020/ODMAP-Report-June-20 
20.pdf), and that fatal synthetic opioid-related ODs increased more than 
50% in 18 of 38 jurisdictions (Network, 2020). Naloxone is now being 
used by individuals with little or no medical training in order to broaden 
our ability to reduce opioid-related OD deaths. However, some reports 
suggest that repeated dosing with naloxone may be required to reverse 
fentanyl-induced respiratory depression (Rzasa Lynn and Galinkin, 
2018; Somerville et al., 2017; Fairbairn et al., 2017). The reason why 

higher doses of naloxone may be required to reverse fentanyl ODs is not 
entirely clear. It is possible that more naloxone is needed simply because 
a large dose of fentanyl was used, a fentanyl analog that is not sensitive 
to naloxone was used, or a post-receptor or non-opioid-receptor cascade 
of effects was initiated that is not sensitive to reversal by naloxone. 
Another possible explanation for the apparent lack of effectiveness of 
naloxone in some OD situations is that fentanyl and naloxone may share 
a common site of drug entry into the brain and when high doses of 
fentanyl are used, the ability of naloxone to pass into the brain is 
impeded (Rzasa Lynn and Galinkin, 2018; Suzuki et al., 2010). Emerging 
preclinical research suggests that other opioid antagonists, such as 
diprenorphine or nalmefene, may be more effective than naloxone in 
reversing fentanyl intoxication and OD (Krieter et al., 2019; Hill et al., 
2019). Finally, another possibility is that naloxone was not properly 
administered in OD scenarios involving untrained bystanders, although 
a recent study suggests that non-medical bystanders who receive 
training in how to recognize an opioid OD and administer naloxone are 
proficient at using naloxone to reverse an opioid OD (Neale et al., 2019). 
Clearly, additional studies are needed to understand the mechanisms 
by which fentanyl and its analogs produce severe respiratory depres-
sion. Furthermore, studies are needed to assess the effectiveness of 
other opioid antagonists in reversing fentanyl-related OD because 
naloxone may not be the ideal compound for reversing the respiratory 
depressant effects of fentanyl-related compounds. 

3. Class-wide banning of fentanyl-related compounds 

The current fentanyl crisis poses a formidable challenge to Congress 
and the DEA since there are thousands of (existing or potential) fentanyl 
analogs, some of which have high abuse liability and dependence po-
tential. While fentanyl, sufentanil, alfentanil, remifentanil, and other 
fentanyl-related prescription opioids are classified as Schedule II, more 
potent and toxic analogs with no therapeutic value are classified as 
Schedule I. Carfentanil represents an intriguing example of a highly 
potent opioid that is classified as Schedule II because it is used in vet-
erinary medicine to immobilize large animals. Radiolabeled carfentanil 
is also used in trace amounts as a positron emission tomography (PET) 
imaging agent to label μORs. Importantly, the use of carfentanil has been 
increasingly regulated due to concerns for its potential use in chemical 
attacks or mass casualty scenarios. Because fentanyl analogs are classi-
fied as either Schedule I or II controlled substances, it is challenging to 
balance their clinical use and their improper recreational use from a 
regulatory standpoint. In the face of the opioid crisis, it seems tempting 
to legally ban all compounds that are chemically similar to fentanyl. 
Indeed, the U.S. DEA enacted an emergency class-wide ban on fentanyl- 
related compounds in 2018 by temporarily placing them into Schedule 1 
(Docket No. DEA-476 21 CFR Part 1308; Federal Register Vol 83, No. 25, 
February 6, 2018). As defined by this temporary order, “fentanyl-related 
substances include any substance not otherwise controlled in any 
schedule (i.e., not included under any other Administration Controlled 
Substance Code Number) that is structurally related to fentanyl by one 
or more of the following modifications:  

(A) Replacement of the phenyl portion of the phenethyl group by any 
monocycle, whether or not further substituted in or on the 
monocycle;  

(B) substitution in or on the phenethyl group with alkyl, alkenyl, 
alkoxyl, hydroxyl, halo, haloalkyl, amino or nitro groups;  

(C) substitution in or on the piperidine ring with alkyl, alkenyl, 
alkoxyl, ester, ether, hydroxyl, halo, haloalkyl, amino or nitro 
groups;  

(D) replacement of the aniline ring with any aromatic monocycle 
whether or not further substituted in or on the aromatic mono-
cycle; and/or  

(E) replacement of the N-propionyl group by another acyl group.” 
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Unfortunately, class-wide banning based on chemical structure is 
likely to have unintended consequences including severely limiting 
biomedical research and, in the long term, adversely impacting public 
health. The opioid crisis is a very challenging public health issue and, 
arguably, we have yet to significantly turn the tide in this battle despite 
our current efforts. To restrict research by limiting access to potentially 
important compounds, based solely on chemical structure, is not likely 
to facilitate progress in this arena. 

The following sections highlight the challenges associated with class- 
wide scheduling based on chemical structure without accounting for 
empirically determined pharmacologic activity in vivo. Examples are 
provided that demonstrate limitations in predicting abuse liability from 
structure-activity relationships (SAR) or chemical structural similarity, 
instances where potentially non-addictive analgesics and therapeutics 
are mistakenly covered under broad regulatory language, and implica-
tions for class-wide scheduling disrupting the development of small 
molecules and biologics against OUD and overdose. 

4. Opioid SAR and abuse liability must be determined 
empirically 

Opioids produce their effects through several subtypes of receptors, 
including mu, kappa, and delta opioid receptors (μORs, κORs, and δORs) 
and nociceptin-orphanin FQ peptide (NOP) receptors, each of which 
produces a unique profile of pharmacological responses. Morphine and 
codeine contain a rigid 4,5-epoxymorphinan structural skeleton that 
has been the subject of comprehensive SAR studies for many decades 
(Casy and Parfitt, 1986). Though some trends are generally observed 
within a congeneric series – such as N-methyl-substituted 4,5-epoxymor-
phinans being high-efficacy μOR agonists – these trends should not be 
taken as absolute fact across structurally related, non-congeneric series. 
Recent examples of exceptions to the expected SAR of epoxymorphinans 
are shown in Fig. 1. One example is benzylideneoxymorphone 
(BOM, compound 1), a 4,5-epoxymorphinan that shares the pharma-
cophore and N-methyl substitution pattern of oxymorphone, a potent 
μOR agonist. In contrast to the general trend that N-methyl-substituted 
derivatives are high-efficacy μOR agonists, 1 is a low-efficacy 
(Emax < 50%) μOR partial agonist that was empirically determined to 
have very low abuse liability in preclinical tests of motivated behavior 
(Mada et al., 2020; Healy et al., 2017). In another example, Husbands 
and colleagues (Ding et al., 2016) described the design of an orvinol 
analog of buprenorphine (Fig. 1, compound 2, defined below as 
BU08028) whose chemical structure differs from buprenorphine by the 
addition of a single methyl group. Crucially, this simple structural 
change imparts substantial changes in its receptor binding profile that 
introduces NOP receptor binding affinity and efficacy, in addition to 
activity at μORs. Preclinical assessment of BU08028 (compound 2, 
Fig. 1) in non-human primates demonstrated antinociceptive and anti-
allodynic effects without the associated adverse effects that limit tradi-
tional μOR agonists: abuse liability, physical dependence, and 
respiratory depression were all significantly reduced for BU08028 when 
compared to morphine (Ding et al., 2016). The examples of BOM and 
BU08028 highlight the challenge in drawing broad conclusions about 

abuse liability of opioids based purely on SAR trends without accounting 
for in vivo pharmacologic activity. 

5. Potentially problematic outcomes of scheduling 4-anilidopi-
peridines based on structure 

Fentanyl is a member of the 4-anilidopiperidine structural class that 
was developed by Janssen Pharmaceuticals in 1972 (Burns et al., 2018). 
The ease of synthesis of 4-anilidopiperidines and their structural analogs 
was an advantage in early drug discovery efforts because large libraries 
could be generated (Scheme 1), and their opioid receptor SAR could be 
evaluated quickly using in vitro methods and in vivo analgesic testing. 
The SAR for 4-anilidopiperidines have been reviewed (Vardanyan and 
Hruby, 2014; Vuckovic et al., 2009). The reagents required to synthesize 
these analogs are generally inexpensive and widely available. Thus, the 
ease in synthesis and availability of precursor reagents has fueled the 
proliferation of dozens of analogs of fentanyl generated by clandestine 
laboratories; however, these attributes, when combined with the rela-
tively simple structure of 4-anilidopiperidines, are also advantageous 
during the development of diverse classes of therapeutics. 

As with 4,5-epoxymorphinans, scheduling 4-anilidopiperidines 
based on the chemical structure and SAR alone has the potential to 
capture compounds lacking significant potential for harm while also 
missing compounds that have documented abuse liability. This would 
have a negative effect on innovation, particularly in terms of developing 
safer analgesics or other medical interventions that incorporate small 
molecule-based components. A non-exhaustive list of fentanyl de-
rivatives that would fall in this category is shown in Fig. 2 and discussed 
below. 

Whereas the rewarding effects of opioids that contribute to SUDs are 
mediated primarily through activation of mesolimbic μORs, consider-
able evidence implicates μORs in both the central and peripheral ner-
vous systems as contributing significantly to analgesic effects. 
Consequently, peripherally restricted μOR agonists could be viable as 
analgesics with reduced abuse potential and propensity for physical 
dependence. This is exemplified by compound 3. The rationale behind 
the design of 3 is that long-chain polyethyleneglycol (PEG) ethers add 
molecular size and polar surface area, two properties that limit passive 
permeability across the blood-brain barrier (BBB) (Averick SB et al., 
2017). 

Another innovative approach to peripheral drug development takes 
advantage of pH differences in inflamed vs. non-inflamed tissues. Stra-
tegic addition of fluorine to either the piperidine ring or N-arylalkyl 
substituent lowers the pKa of the basic amine. As a protonated amine is a 
requirement for fentanyl binding to μORs, compounds like 4 and 5 have 
highest μOR affinity in inflamed tissues where pH is below 752,53. 
Though evaluation of the behavioral effects of these compounds remains 
limited, robust preclinical development of this concept would be 
severely impacted by class-wide banning of fentanyl-related 
compounds. 

In some cases, the abuse liabilities of fentanyl analogs have been 
empirically determined to be low. Mirfentanil (6) is an example of a 
fentanyl analog with a unique pharmacodynamic (PD) profile that is 

Fig. 1. Examples of structurally similar 4,5-epoxymorphinans possessing divergent pharmacologic activities in vivo.  
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incompletely understood. Preclinical in vivo evaluation suggests that this 
compound possesses a multimodal mechanism of action and also has low 
abuse liability (France et al., 1995). Despite the fact that preclinical 
evaluation of mirfentanil suggests low abuse liability, its structural 
similarity to fentanyl would cause this candidate to be improperly 
categorized under Schedule I, despite having low documented potential 
to cause harm. 

4-Anilidopiperidines have affinity for alternate targets and can be 
developed for diverse pharmacologic outcomes. For example, AT-202 
(7) was developed as part of a robust analgesic development program 
by Astraea Therapeutics. Different from other μOR agonists, AT-202 and 
related compounds have high affinity for the NOP receptor (Toll et al., 
2009). The NOP receptor emerged as a viable target for analgesic 
development that does not share the adverse effects profile of μORs. In 
vivo evaluation of the related compound, AT-121, showed potent anti-
nociception in non-human primates, with negligible abuse liability. 
Other, non-opioid compounds that would satisfy the criteria outlined in 
the temporary scheduling order include 8 (glycine transporter inhibitor 
(Alberati-Giani et al., 2004)), 9 (anti-inflammatory (Ghosh et al., 
2004)), 10 (anti-allergy (Ozawa MS et al., 2008)), and 11 (HIV 

attachment inhibitor (Wang TY et al., 2014)). The inclusion of these 
latter two compounds as possibly targeted under the temporary sched-
uling order is considered questionable: though carbonyl substitution is 
not expressly included under the criteria listed, other oxidation states, e. 
g., hydroxyl and methoxy, are included. 

The language in the temporary scheduling order misses close struc-
tural classes of fentanyl analogs that can be exploited (Fig. 3). One 
example is the short-acting anesthetic, remifentanil (Ultiva). In order to 
be classified as a fentanyl analog under the temporary scheduling order, 
remifentanil must have a monocyclic group attached to the basic amine; 
instead, this group is replaced by a methyl ester. The N-phenethyl 
portion of fentanyl is tolerant of diverse structural modifications and is 
likely able to be modified to avoid inclusion under this order. 

Another concern is the tolerance of the aniline portion to homolo-
gation and modification. Casy and Huckstep reported in 1988 that the 
N4-benzyl (12) and N4-phenethyl (13) amide analogs are approximately 
equipotent with morphine in the warm-water tail-withdrawal test in rats 
(Casy and Huckstep, 1988). Of note, the N1-phenethyl group of 12 could 
be replaced with an N1-methyl (14) and maintain potent antinociception 
in this test. This is particularly problematic, since clandestine 

Scheme 1. A concise general synthesis of fentanyl analogs. Diverse products can be generated through a three-step sequence of piperidone-N-alkylation (a), 
reductive amination (b), and N-acylation (c). 

Fig. 2. Fentanyl analogs that are likely to possess low abuse liability and would be classified by the Temporary Placement of Fentanyl-Related Substances in Schedule 
1 (Docket No. DEA-47621 CFR Part 1308; Federal Register Vol 82, No. 25, February 6, 2018). The portions of each compound and the portion of the temporary 
scheduling order that would classify them are shown in red. Ambiguous regions containing structural modifications that are not specifically defined by the temporary 
scheduling order, but that are closely related to them, are shown in blue and designated by a question mark. Please refer to the designations (A-E) that are described 
in the text in section 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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laboratories look to the available literature for ways to avoid prosecu-
tion, and the Casy and Huckstep publication is freely available in the 
public domain. 

6. Barriers to the development of vaccines and antibodies 
against fentanyl or its analogs 

Classification of fentanyl derivatives or analogs into either Schedule I 
or II may have an impact beyond development of small molecule-based 
medications and their clinical implementation. Opioid-based small 
molecules are used as key components to generate either conjugate 
vaccines or isolate monoclonal antibodies (mAbs) to treat or prevent 
OUD and opioid-related fatal ODs (Baehr et al., 2020; Pravetoni and 
Comer, 2019). Vaccines consist of opioid-based small molecule haptens 
conjugated to higher molecular weight immunogenic carriers (e.g., 
bacterial or viral proteins, nanoparticles), and formulated in adjuvant or 
other platforms (e.g., liposomes) to improve immunogenicity and de-
livery (Fig. 4, panel A). Active immunization with vaccines stimulates 
the innate and adaptive immune system over time to generate polyclonal 

antibodies specific for the target opioid (Pravetoni, 2016). In contrast, 
passive immunization with mAbs provides almost immediate thera-
peutic levels of antibodies. Upon drug consumption, either polyclonal 
antibodies or mAbs will selectively bind the target drug preventing its 
distribution across the BBB, and decreasing its pharmacological, physi-
ological, and behavioral effects. Pre-clinical studies have shown that 
vaccines and mAbs are effective in reducing fentanyl-induced anti-
nociception, respiratory depression, bradycardia, and fentanyl 
self-administration in various animal models (Baehr et al., 2020; Raleigh 
et al., 2019; Tenney et al., 2019; Bremer et al., 2016; Smith et al., 2019; 
Robinson et al., 2020; Barrientos et al., 2020). Pre-clinical efficacy for 
these emerging immunotherapeutic interventions also extends to 
sufentanil, carfentanil, and other Schedule I or Schedule II fentanyl 
analogs (Bremer et al., 2016; Smith et al., 2019; Robinson et al., 2020; 
Barrientos et al., 2020). Because of their selectivity, vaccines and mAbs 
do not interfere with the pharmacological activity of naloxone, 
naltrexone, methadone, buprenorphine, and other opioid agonists used 
in pain management or anesthetics used in critical care (Baehr et al., 
2020; Raleigh et al., 2019; Tenney et al., 2019; Bremer et al., 2016; 
Smith et al., 2019; Robinson et al., 2020; Barrientos et al., 2020). 

Despite their promising pre-clinical proof of efficacy, selectivity and 
safety, one of the major challenges in translation of vaccines for OUD 
remains their manufacturing under Good Manufacturing Practice (GMP) 
to support preclinical and clinical evaluation. Our experience relates to 
development of vaccines targeting oxycodone, heroin, and fentanyl 
(Fig. 4). Specifically, in order to synthesize opioid-based haptens, 
perform their conjugation to carrier proteins, and formulate these con-
jugates in adjuvant or other vehicle, our team engaged contract devel-
opment and manufacturing organizations (CDMOs) and contract 
manufacturing organizations (CMOs) capable of performing such tasks 
under GMP. Hence, the biggest regulatory challenges were to first clarify 
the hapten status through its chemical evaluation by the DEA, and then 
to acquire appropriate regulatory approval to conduct such work. 

Haptens derived from the morphinan structures consisting of either 
oxycodone or morphine derivatized at the C6 position and equipped 

Fig. 3. Potent fentanyl analogs that would not be covered under the Temporary 
Placement of Fentanyl-Related Substances in Schedule 1 (Docket No. DEA-476 
21 CFR Part 1308; Federal Register Vol 83, No. 25, February 6, 2018). 

Fig. 4. Opioid-based small molecules are key components for generating vaccines and antibodies against OUD. A) Schematic representation of an opioid conjugate 
vaccine. B-D) Structure of oxycodone, heroin, and fentanyl. D) Fentanyl contains an N-phenylethyl moiety required for activity at μOR. E-G) Respective haptens 
containing tetraglycine [(Gly)4] linkers for conjugation to carrier proteins and generation of vaccines. 
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with a tetraglycine linker [(Gly)4 (Pravetoni et al., 2012a, 2012b),] were 
classified by the DEA as Schedule II (Fig. 4, panel D and E), despite 
lacking activity at μORs in vitro (data not shown). For instance, both the 
OXY(Gly)4 hapten and its intermediate oxy-
codone-(6-norketo)-6-(2-(ideneamino)oxy)acetic acid were defined as 
Schedule II according to the 21 United States Code 812(a)(1) Schedule II 
and 21 CFR 1309.12(b)(1) because they retain chemical structures 
characteristic of the oxycodone parent compound. In contrast, the 
analogous fentanyl-based hapten F(Gly)4 was not classified as a 
controlled substance under the Title 21 Code 1308.11(h)(30) because it 
does not contain the N-phenylethyl moiety, which is a structural feature 
critical for agonist activity at μORs (Fig. 4, panel C and F), as confirmed 
by F(Gly)4's lack of activity at μORs in in silico and in vitro assays 
(Robinson et al., 2020). While none of these opioid-based haptens [OXY, 
M, and F] displayed functional agonist activity at μORs, only the F(Gly)4 
was ruled out of scheduling based upon structural features. In order to 
synthesize the OXY and M haptens under GMP, our team had to acquire 
Schedule II manufacturing licenses at our CDMO/CMO partners. While 
achievable, this process required a significant investment of time and 
funds, and logistic challenges for shipping vaccine components across 
sites and state lines to manufacture a filled drug product and to complete 
its qualification. In contrast, the F(Gly)4 hapten will likely not pose such 
a challenge. However, other promising haptens currently under devel-
opment retain the core structure of fentanyl, carfentanil, acetylfentanyl 
or other target analogs and may retain activity at μORs. Because most of 
these haptens are novel analogs, their chemical evaluation under the 
Class Act will likely fall into the Schedule I code 9850 for 
fentanyl-related analogs, requiring either a Schedule I researcher or 
manufacturer license to synthesize and conjugate them to carriers. 
Fortunately, either Schedule I or II haptens conjugated to carrier pro-
teins or other high molecular weight molecules (e.g., polymers) are no 
longer considered controlled substances, which does not impact their 
further development. Because haptens are only intermediates to devel-
opment of conjugate vaccines, or to generate reagents to isolate and 
characterize anti-opioid mAbs, regulatory paths toward exemption from 
scheduling would support their translation. 

7. Conclusions and recommendation 

The language of the Controlled Substances Act defines Schedule I 
controlled substances as those agents that have no known clinical utility 
and possess a high potential for abuse and misuse. As documented here, 
scheduling new chemical substances based on a common chemical 
scaffold alone is insufficient to meet this threshold, as exceptions to the 
SAR “rules” for opioid activity are encountered frequently in drug 
development. Therefore, assessing the pharmacological activity of a 
compound should be a required step before placing it permanently into 
Schedule I. Further, class-wide scheduling of 4-anilidopiperidines would 
add critical barriers to developing non-addicting analgesics and class- 
specific vaccines or antibodies against fentanyl or its analogs. 

Defaulting new fentanyl analogs into the Schedule I class 9850 
category as well as class-wide scheduling will specifically affect 
manufacturing under GMP, preclinical Good Laboratory Practice (GLP) 
toxicology studies, and clinical implementation of these novel therapies. 
Academic, private, or government laboratories engaged in drug dis-
covery and medication development typically hold Schedule I and II-V 
Researcher Licenses, which support early activities and pre-clinical 
testing of small molecules or modifications thereof (e.g., vaccines). 
However, scale-up and manufacturing most often involve shipping of 
small molecules across sites and state lines, collaborations with CMOs or 
CDMOs capable of synthesizing the lead compound are GMP, and such 
activities may require either a Schedule I or II Manufacturer or 
Distributor License. In order to pursue a Schedule I or II Manufacturer 
License, significant upgrades to the facility or laboratory footprint are 
required. While this may be feasible for Schedule II Manufacturer 
Licenses, it is quite time-consuming and expensive to do so for Schedule I 

Manufacturers. Such limitations may affect the development of small 
molecule analgesics as well as vaccines or antibodies targeting fentanyl 
and its analogs. A critical aspect of the Schedule I definition is that the 
derivatives themselves have no known therapeutic indication. Ironi-
cally, the therapeutic potential of many Schedule I drugs will never be 
known precisely because they are scheduled. 
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