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Abstract

Government agencies around the world use data-driven algorithms to allocate
enforcement resources. Even when such algorithms are formally neutral with respect
to protected characteristics like race, there is widespread concern that they can
disproportionately burden vulnerable groups. We study differences in Internal
Revenue Service (IRS) audit rates between Black and non-Black taxpayers. Because
neither we nor the IRS observe taxpayer race, we propose and employ a novel partial
identification strategy to estimate these differences. Despite race-blind audit
selection, we find that Black taxpayers are audited at 2.9 to 4.7 times the rate of
non-Black taxpayers. The main source of the disparity is differing audit rates by race
among taxpayers claiming the Earned Income Tax Credit (EITC). Using
counterfactual audit selection models for EITC claimants, we find that maximizing
the detection of underreported taxes would not lead to Black taxpayers being audited
at higher rates. In contrast, in these models, certain policies tend to increase the
audit rate of Black taxpayers: (1) designing audit selection algorithms to minimize
the “no-change rate”; (2) targeting erroneously claimed refundable credits rather
than total under-reporting; and (3) limiting the share of more complex EITC returns
that can be selected for audit. Our results highlight how seemingly technocratic
choices about algorithmic design can embed important policy values and trade-offs.
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1 Introduction

The U.S. federal government annually collects $4 trillion in tax revenue to fund public

programs ranging from economic regulation to military defense. Increasingly, policymakers

have also come to rely on the tax system for implementing a host of social programs; for

example, the Earned Income Tax Credit (EITC) has replaced welfare as the largest

cash-based safety net program in the United States. The Internal Revenue Service (IRS)

administers these programs and is also charged with ensuring that individuals meet their

taxpaying obligations. Like tax authorities around the world, it relies on audits to detect

underreporting of tax liabilities and to verify that taxpayers qualify for the benefits they

claim.

The task of selecting which taxpayers to audit is in large part an exercise in predicting

which taxpayers have underreported tax obligations that an audit would uncover. Modern

machine learning methods offer the potential to enhance the efficiency of audits by

improving predictive accuracy, but a growing literature in algorithmic fairness warns that

policies based upon such predictions may inadvertently reinforce disadvantages against

historically marginalized groups (Angwin et al., 2016; Buolamwini and Gebru, 2018;

Rambachan et al., 2020). Such concerns are particularly acute for tax audits, which can

exacerbate financial strain for the lowest income taxpayers – whose tax refunds are

typically frozen while an audit is in place – and can dissuade individuals from participating

in safety net programs for which they qualify (Guyton et al., 2018; National Taxpayer

Advocate, 2019a).

In this paper, we investigate racial disparities in the selection of taxpayers for audit,

focusing on differences in the selection of Black and non-Black taxpayers. Because the IRS

does not collect information about taxpayers’ race, identifying differences in audit rates by

race is itself a significant challenge. Researchers have developed a range of tools for imputing

race from other observed characteristics but such approaches can lead to biased estimates for

the parameters of interest unless restrictive assumptions are satisfied (Chen et al., 2019; Knox
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et al., 2022). A second methodological challenge is that even if we could observe taxpayer

race, the fact that underreporting is observed only for those returns that were selected for

audit (the so-called selective labels problem) (Kleinberg et al., 2018) makes it difficult to

understand why disparities emerge or which policies would lessen them.

Through a unique partnership with the Treasury Department, we investigate these

questions using comprehensive microdata on approximately 148 million tax returns and

780,000 audits.1 To circumvent the selective labels problem, we also leverage nearly 72,000

audits of randomly selected taxpayers to investigate the effects of counterfactual audit

selection policies. To address the problem of missing race, we use Bayesian Improved First

Name and Surname Geocoding (BIFSG), imputing race based on full name and census

block groups (Imai and Khanna, 2016; Voicu, 2018). We then propose and implement a

novel approach for bounding the true audit disparity by race from the (imperfectly

measured) BIFSG proxy. By individually matching a subset of the tax data to

self-identified race data from other administrative sources, we provide evidence that the

assumptions underlying our bounding approach are satisfied in practice.

We report a number of new results about racial disparities in tax audits. First, we

estimate that the audit rate for returns filed by Black taxpayers is between 0.81 and 1.34

percentage points higher than the audit rate for non-Black taxpayers. This (unconditional)

disparity is substantial when compared to the base audit rate of 0.54% for the overall U.S.

population. In relative terms, our estimates imply that Black taxpayers are audited at

between 2.9 to 4.7 times the rate of non-Black taxpayers.

Second, we find that the difference in audit rates for Black and non-Black taxpayers

is primarily driven by the difference in audit rates among taxpayers who claim the EITC.

Others have speculated that Black taxpayers may be audited at higher rates because they

are more likely than non-Black taxpayers to claim the EITC, and EITC claimants (of any

race) are audited at higher rates than most other taxpayers (Bloomquist, 2019; Kiel and

1We primarily focus on tax year 2014 – the most recent year for which audit outcome data was complete
at the time of our analysis. We find similar results for other years spanning the 2010–2018 time period.
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Fresques, 2019). However, we find that this channel explains only a small portion of the

disparity (14%). Instead, the larger source of the disparity (78%) stems from the selection of

taxpayers for audit within the population of EITC claimants: Black taxpayers claiming the

EITC are between 2.9 and 4.4 times as likely to be audited as non-Black EITC claimants. In

contrast, we observe a much smaller, though still statistically significant, difference in audit

rates between Black and non-Black taxpayers who do not claim the EITC.

Third, we explore the contribution of group-level differences between Black and non-

Black taxpayers to the observed disparity in audit rates. We find that the disparity cannot

be fully explained by racial differences in income, family size, or household structure, and

that the observed audit disparity remains large after conditioning on these characteristics.

For example, among unmarried men with children, Black EITC claimants are audited at more

than twice the rate of their non-Black counterparts. More strikingly, the disparity cannot

be fully explained even by accounting for group-level differences in tax under-reporting:

we estimate that Black EITC claimants are audited at higher rates than non-Black EITC

claimants within each decile of under-reported taxes.

Because EITC audit selection is largely automated, and because the IRS does not observe

race, the status quo racial audit disparity is unlikely to be driven by disparate treatment

of Black and non-Black taxpayers. Nonetheless, there may be opportunities for the agency

to adjust its enforcement policies in ways that alleviate the disparity without significantly

undermining other policy goals. Our final set of analyses explores this possibility and the

associated trade-offs.

To do so, we use data from randomly selected audits of returns claiming the EITC to

explore counterfactual audit selection policies. We first show that if it were possible to select

audits in descending order of true under-reported tax liability, Black taxpayers would be

audited at a lower rate than non-Black taxpayers. The same is true if audits were selected

according to predicted underreporting based on the pre-audit tax return characteristics that
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IRS observes and machine-learned models.2

However, we show that changing the prediction model’s objective can dramatically

increase the share of Black taxpayers selected for audit. In particular, if the model is

trained to predict whether the taxpayer under-reports, instead of the expected magnitude

of underreported taxes, Black taxpayers are audited at higher rates. Intuitively, the choice

of label — whether to solve a classification or regression problem — matters for shaping

disparity because the taxpayers with the highest under-reported taxes tend to be

non-Black, but the available data allow the classifier model to assign the highest

probabilities of underreporting to more Black than non-Black taxpayers. We find a similar

effect on racial disparity from training the algorithm to detect over-claiming of refundable

tax credits rather than total under-reporting due to any error on the return.

Finally, we consider the effect of policies that constrain the allocation of audits across

distinct categories of EITC-claiming tax returns. In particular, tax returns with substantial

business income tend to be more complicated to audit than those without such income. The

IRS may be limited in its ability to reallocate audits from non-business to business returns,

at least in the short-term, due to a lack of auditors with the required expertise. We find

that operational constraints like these may shape racial disparities: among EITC returns,

imposing a constraint that maintains the status quo fraction of audited returns that report

business income increases the share of audits focused on Black taxpayers, relative to an

unconstrained baseline.

Our results contribute to an empirical literature that studies the distributional effects of

tax policy by race, with seminal contributions by Moran and Whitford (1996) and Brown

(2021), among others.3 However, the unavailability of race-linked administrative microdata

has limited the questions that prior studies could address and the alternative policies they

2We obtain similar results when focusing on detected under-reporting net of IRS auditing costs.
3This literature has primarily focused on substantive tax provisions such as the mortgage interest

deduction (Brown, 2009, 2018), the EITC (Brown, 2005; Hardy et al., 2021), and the Child Tax Credit
(Collyer et al., 2019; Goldin and Michelmore, 2022).
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could evaluate (Bearer-Friend, 2019; Brown, 2021; Dean, 2021).4 We build on this literature

by linking imputed race estimates with anonymized administrative data on tax returns and

audits. Doing so allows us to produce the most direct evidence to date on longstanding

questions about racial disparities in the administration of the U.S. income tax. In addition,

by drawing on detailed data from random audits, our results shed light on how alternative

policies may affect audit rate disparities while promoting or hindering other IRS objectives.

A second contribution of our paper is to introduce a novel partial identification approach

for conducting algorithmic disparity assessments along the lines of a protected class, when

that class is unobserved to the researcher. This challenge arises in a wide range of settings,

including voting rights (Imai and Khanna, 2016), regulatory policy (CFPB, 2014; Anson-

Dwamena et al., 2021; Haas et al., 2019), and a wide variety of industry settings (Alao et al.,

2021; Andrus et al., 2021). For example, although many U.S. agencies are required by federal

law to conduct disparity assessments of the algorithmic decision tools they employ, protected

characteristics like race are often missing from administrative records (G.A.O., 2020; Exec.

Order. 13985, 2021). Our approach relies on weaker conditions than those required to point-

identify difference in outcomes by unobserved protected class (e.g., Chen et al., 2019; Fong

and Tyler, 2021), while still yielding bounds that may be informative for policy.5

Finally, our results highlight how seemingly technocratic algorithmic design decisions

can embed important policy values and trade-offs. Governments are increasingly employing

modern prediction methods to allocate public benefits and enforcement resources. While

prior research in the algorithmic fairness literature has demonstrated how ostensibly

4Prior analyses have yielded some suggestive evidence, however. For example, Bloomquist (2019) studies
regional bias in IRS audits using estimated county-level data, and notes that the ten most heavily audited
counties were predominantly comprised of Black taxpayers, whereas the ten least heavily audited counties
were predominantly non-Black. In addition, prior research has linked tax data with Census records on self-
reported race to study primarily non-tax outcomes (e.g., Chetty et al., 2020); however, various legal and
institutional constraints currently limit our ability to apply this approach to our setting.

5Kallus et al. (2021) also consider a partial identification approach to estimating disparity when the
protected characteristic must be imputed. Unlike our approach, their bounds cover all joint distributions
consistent with the observed marginals. In our setting, the Kallus et al. bounds are largely uninformative as
to the magnitude or even direction of the audit rate disparity; they cannot rule out Black taxpayers facing
either higher or lower audit rates than non-Black taxpayers. Our approach requires additional structure, but
the payoff to that structure is a significantly more informative estimate when our assumptions hold.
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neutral algorithms can replicate or exacerbate biases present in the data, our results

highlight the importance of a different aspect of algorithmic design: namely the definition

of the outcome being predicted (i.e., the choice of “label”). Moreover, while much of the

algorithmic fairness literature is concerned with an accuracy-fairness trade-off

(Corbett-Davies et al., 2017; Kearns et al., 2018; Menon and Williamson, 2018; Zhao and

Gordon, 2019; Chen et al., 2018; Elzayn et al., 2019), our results show how the extent and

even existence of such trade-offs can depend on seemingly minor differences in how the

label is defined.6

The paper proceeds as follows. Section 2 provides background on the U.S. tax system

and taxpayer audits. Section 3 describes our empirical strategy. Section 4 describes our

data. Section 5 provides results relating to estimated race probabilities and statistical bias

of our proposed estimators. Section 6 estimates differences in audit rates between Black

and non-Black taxpayers. Section 7 investigates the potential role of algorithmic design and

other enforcement policies in generating and mitigating disparities. Section 8 concludes.

2 Institutional Background

This section provides background regarding the U.S. individual income tax, taxpayer audits,

and the EITC.

2.1 The U.S. Income Tax

The individual income tax is the primary source of revenue for the United States federal

government. Most U.S. citizens, as well as some non-citizens, are required to file an income

tax return each year, on which they calculate and report their tax liability for the year

6The algorithmic fairness literature has proposed a large range of fairness metrics (Mitchell et al., 2021). In
our setting, there are multiple normative baselines one might adopt, such as the magnitude of the disparity
or the difference in audit rates relative to ground-truth differences in underreporting. We do not take a
stance on the proper normative baseline but rather show how different audit selection policies would shape
differences in the audit rate between Black and non-Black taxpayers.
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based on their income as well as any deductions or credits for which they qualify. Unmarried

taxpayers file individual returns, whereas most taxpayers who are married file a joint return

with their spouse. Taxpayers with children or other dependents may claim them on their

own return to qualify for various tax benefits. The vast majority (over 95%) of taxpayers

prepare and file their returns with the help of a professional tax preparer or using guided

tax preparation software.

2.2 Taxpayer Audits

The IRS is the federal agency responsible for promoting and enforcing compliance with the

income tax law. One channel through which it does so is taxpayer audits. Taxpayers selected

for audit are required to provide additional information to the IRS or otherwise verify the

accuracy of the tax liability or refund reported on their tax return.7 Audits may occur by

mail (“correspondence examinations”) or through in-person (or virtual) meetings with IRS

employees (“field” or “office” examinations). In recent years, approximately 70% of audits

have been correspondence audits. Audits of this form tend to focus on a small number of

issues and require a response, with substantiation. If the IRS does not receive a response by

the due date, it will generally disallow the claimed item and issue the taxpayer with a notice of

deficiency. Correspondence audits are substantially cheaper than other forms of audits for the

IRS to conduct, since much of the process is automated and does not require the involvement

of human auditors (IRS, 2011). At the same time, correspondence audits can be particularly

burdensome for lower-income households, who may face additional barriers understanding

the audit notice, acquiring the required documents, or obtaining expert assistance (G.A.O.,

2016; National Taxpayer Advocate, 2021).

If an audit results in an adjustment of the tax liability reported on a taxpayer’s return,

the taxpayer is responsible for remitting the difference to the IRS and may face additional

7Distinct from formal audits and hence not counted as audits in our data, the IRS operates several
programs through which it screens submitted returns for potential identity theft or makes adjustments to
taxpayers’ submitted returns based on information reported to it by third parties, the detection of math
errors, or other factors.
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penalties, as well as, in rare cases, criminal sanctions. Audits may occur pre- or post-refund;

in the former case, applicable refunds are not issued until after the audit is resolved. Hence,

taxpayers who fail to respond to a pre-refund audit typically forego the tax benefits they

claimed on their return. Taxpayers who disagree with the results of an audit may appeal

the determination with the IRS office of appeals and/or in federal court.

At a high level, audits can be categorized into two groups: research and operational.

Research audits are conducted through the National Research Program (NRP), which

consists of a stratified random sample of the tax filing population.8 NRP audits seek to

estimate the correctness of the whole return via a close to line-by-line examination. In part

because they are so intensive to conduct, research audits constitute a small minority of the

audits that the IRS performs each year. For example, about 2% of audited tax year 2014

returns were selected through NRP.

We refer to audits that are not research audits as “operational audits.” Operational

audits constitute the vast majority of audits that the IRS performs. Tax returns are selected

for an operational audit through a wide variety of processes, the details of which are kept

confidential. These processes can range from simple decision rules to manual examination to

prioritization based on model-estimated risk scores. To facilitate our research, we were given

access to information on some but not all of these processes.9 Thus, we are able to observe

whether a return was selected for an operational audit, but typically we cannot observe the

reason why the audit occurred.

2.3 The Earned Income Tax Credit

One tax credit that will be important for our analysis is the Earned Income Tax Credit

(EITC). The EITC provides support to low- and middle-income taxpayers with earnings

8Tax returns are selected for inclusion in the NRP program prior to entering the pipeline for operational
audit selection.

9To the best of our knowledge, we observe all training data and the full set of taxpayer features for
returns claiming the EITC – our focus below – with the exception of audit referrals from whistleblowers or
law enforcement (which are present in a very small share of EITC audits).
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from work. The EITC is designed as a refundable credit, meaning that taxpayers receive

a payment or “refund” from the government if the credit brings their tax liability for the

year below zero. Today, the EITC constitutes the largest cash-based safety net program in

the United States, lifting an estimated 5.6 million households out of poverty at an annual

budgetary cost of approximately $70 billion (Center on Budget and Policy Priorities, 2019;

J.C.T., 2020).

The amount of EITC for which a taxpayer qualifies is based on the taxpayer’s income and

family size. The credit amount initially increases with income for lower-income taxpayers,

plateaus, and then decreases with income once a taxpayer’s income surpasses a specified

threshold. The maximum EITC amount varies based on the number of children a taxpayer

claims; in 2014 (the year that most of our analysis focuses upon), the maximum EITC ranged

from $496 for taxpayers without children to $6,143 for taxpayers with three or more children,

and was available to taxpayers with combined incomes up to $52,247 if married, or $46,997

if single. Taxpayers without income from market work do not qualify for any EITC amount.

Approximately 19% of taxpayers claimed the EITC in 2014, with an average credit of $2122

among claimants (IRS, 2016).

To claim a child for the EITC, the child must satisfy several eligibility tests with respect

to the taxpayer. In particular, the taxpayer must be related to the child through one of a

specified set of relationships (e.g., the child’s parent, stepparent, grandparent, aunt, uncle,

or sibling) and must reside with the child for over half of the tax year. In addition, the

child must generally be below the age of 19, or below the age of 24 if the child is a full-time

student. In cases in which two or more taxpayers qualify to claim a single child, a series of

“tie-breaker” rules govern which claim takes priority.

Non-compliance with the EITC rules has been a persistent subject of policy concern.

Estimates of the EITC improper payment rate hover around 25% (U.S. Treasury

Department, 2022), which many observers attribute to the complicated rules governing

eligibility for the credit (Holtzblatt and McCubbin, 2004; National Taxpayer Advocate,
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2019b). Federal law requiring agencies to measure improper payments effectively imposes a

minimal number of research audits of EITC returns that IRS must conduct, but such rules

do not directly constrain IRS’s ability to adjust the number of EITC returns selected for

operational audit (OMB, 2021). In addition to the EITC, the federal government

designates two other refundable credits—the American Opportunity Tax Credit and

Additional Child Tax Credit—as high-priority programs that are susceptible to significant

improper payments.

In recent years, approximately one-third or more of individual taxpayer audits have been

devoted to returns claiming the EITC (TIGTA, 2021). EITC returns are selected for audit

through a variety of enforcement programs. Many of the audited EITC returns are selected

through the Dependent Database (DDb) program, which flags returns based on a set of

rules and heuristics as well as various proprietary risk scores. The features that are used to

calculate these proprietary risk scores are drawn from taxpayers’ filed returns as well as other

administrative data about taxpayers or their children available to IRS.10 Although its details

are confidential, the model underlying the DDb program is calibrated (at least in part) to

minimize the no-change rate – i.e., the probability that an audit ends with no change to the

tax assessment that the taxpayer reported (G.A.O., 2015).

The vast majority (94% in 2014) of audits of EITC claimants are correspondence

examinations and approximately two-thirds occur pre-refund (see Appendix Table A.1).

Taxpayers who fail to respond to an EITC audit letter (either intentionally, or

unintentionally – e.g., because they changed address) are treated as ineligible for the credit

and forego their claimed refund.

10These administrative data sources include child custody data from the Department of Health and Human
Services, child birth data from the Social Security Administration, and prisoner data from the National
Prisoner File.
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3 Empirical Framework

In this section, we provide results relating to the identification of audit rate disparities on

the basis of protected characteristics (like race) when the characteristic in question cannot

be directly observed by the researcher. Specifically, we show that under certain conditions,

one may use individually estimated race probabilities to obtain informative bounds on the

racial audit rate disparity.

3.1 Basic Notation

Tax returns are indexed by i, and have observable characteristics Xi. We use Bi ∈ {0, 1}

to indicate whether the primary filer on tax return i is Black, and Yi ∈ {0, 1} to indicate

whether i is audited. The audit rate for Black taxpayers is Y B = E[Y |B = 1], and the audit

rate for non-Black taxpayers is Y NB = E[Y |B = 0].

Our goal is to estimate the audit disparity faced by Black taxpayers, D, which we define

as the (unconditional) difference in audit rates between Black and non-Black taxpayers:

D = Y B − Y NB = E[Y |B = 1]− E[Y |B = 0] (Audit Disparity)

We focus on this quantity, as law and policy mandate evidence on such “disparate impact”

or racial disparity (U.S. Executive Order 13985, 2021). Later, we also examine evidence for

disparities conditional on taxpayer characteristics.

An important barrier to studying differences in audit rates by race is that neither we nor

the IRS observe taxpayer race.11 To overcome this challenge, we first estimate the probability

that a taxpayer is Black using a subset of characteristics we do observe, and second, use the

resulting race probabilities, along with data on actual audits, to estimate differences in audit

11At various stages of the audit process following selection, individual examiners may be able to observe
a taxpayer’s race or proxies for it; we lack access to sufficient institutional details to assess whether such
knowledge could translate into differential treatment by race of taxpayers during audit processes following
audit selection.
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rates by race. That is, our approach is to:

1. Estimate bi = Pr[Bi = 1|Zi], where Zi ⊆ Xi is a subset of i’s observable characteristics

2. Use estimated bi and observed Yi to estimate D

In the remainder of this section, we describe these two steps – imputing race and using

imputed race to estimate disparity – in additional detail.

3.2 Imputing Race

To impute race, we draw on Bayesian Improved Surname Geocoding, which uses name and

geolocation to probabilistically infer race (Imai and Khanna, 2016). This method has been

widely applied in academic studies and is recommended when race is missing by the National

Academy of Medicine (Nerenz et al., 2009). Recent work has shown that first names are more

informative than surnames for identifying Black individuals (Voicu, 2018), so we incorporate

first name information as well, applying Bayesian Improved First Name Surname Geocoding

(BIFSG). The method is “naive” in the sense that it assumes that first name, surname, and

geography are independent after conditioning on race:

Pr[F, S,G|B] = Pr[F |B] Pr[S|B] Pr[G|B]

where F is first name, S is surname, and G is geography. Using Bayes’ rule, this assumption

implies

Pr[B = 1|F, S,G] =
Pr[F |B = 1] Pr[S|B = 1] Pr[G|B = 1] Pr[B = 1]

1∑
j=0

Pr[F |B = j] Pr[S|B = j] Pr[G|B = j] Pr[B = j]

, (1)

and similarly for Pr[B = 0|F, S,G]. See Appendix B for a formal derivation. Estimating

these terms by name and geography allows us to impute individual-level race probabilities.

The data used to construct these estimates are described in Section 4. Because audits occur
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at the level of the tax return, we estimate a single race probability per return, focusing on

the primary filer in cases of joint returns by married spouses.

3.3 Estimating Disparity using Imputed Race

After estimating the probability that each taxpayer is Black, we next consider how to use

those estimated probabilities to identify the difference in average audit rates by race. We

consider two estimators: the probabilistic disparity estimator and the linear disparity

estimator. Below, we characterize the bias of each estimator, provide conditions under

which the two estimators bound the true audit disparity, and provide empirical support for

those conditions obtaining in our setting. We derive the asymptotic distributions of the

probabilistic and linear disparity estimators in Appendix B.

The probabilistic estimator calculates average audit rates by race by weighting each

observation’s contribution by the probability that the taxpayer is Black. Formally, given

estimated race probability bi and audit status Yi, we define the probabilistic audit rate

estimators as

Ŷ B
p =

∑
i biYi∑
i bi

Ŷ NB
p =

∑
i(1− bi)Yi∑
i(1− bi)

where B and NB refer to the estimated audit rate among Black and non-Black taxpayers,

respectively. The probabilistic estimator of the disparity in audit rates between Black and

non-Black taxpayers, D̂p, is then given by the difference in the probabilistic audit rates by

race:

D̂p = Ŷ B
p − Ŷ NB

p =

∑
i biYi∑
i bi
−
∑

i(1− bi)Yi∑
i(1− bi)

The second racial audit disparity estimator we consider is the linear disparity estimator,
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D̂l. Consider the regression of Y on b:

Y = α + βb+ η.

The linear disparity estimator is derived from the estimated coefficient on b in this regression:

D̂l = β̂ =

∑
i(Yi − Y )(bi − b)∑

i(bi − b)2

where Y and b denote the sample averages of Y and b, and where the corresponding linear

estimators of Y B and Y NB are given by Ŷ B
l = α̂ + β̂ and Ŷ NB

l = α̂.

In Appendix B, we show that the two pairs of audit rate estimators (Ŷ B
l , Ŷ

NB
l and

Ŷ B
p , Ŷ

NB
p ) converge to the true audit rates (Y B and Y NB) under differing conditions; in

particular, the linear audit rate estimators are unbiased when E[Cov(Y, b|B)] = 0, whereas

the probabilistic audit rate estimators are unbiased when E[Cov(Y,B|b)] = 0. But in general,

they, and consequently the disparity estimators derived from them (D̂l and D̂p), will be

biased. We characterize the biases of the disparity estimators in the following proposition:

Proposition 1. Suppose that b is a taxpayer’s probability of being Black given some

observable characteristics Z, so that b = Pr[B = 1|Z]. Define Dp as the asymptotic limit of

the probabilistic disparity estimator, D̂p, and Dl as the asymptotic limit of the linear

disparity estimator, D̂l. Then:

1.

Dp = D − E[Cov(Y,B|b)]
Var(B)

(1.1)

2.

Dl = D +
E[Cov(Y, b|B)]

Var(b)
(1.2)
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3. Suppose E[Cov(Y,B|b)] ≥ 0 and E[Cov(Y, b|B)] ≥ 0. Then

Dp ≤ D ≤ Dl (1.3)

4. Suppose E[Cov(Y,B|b)] ≤ 0 and E[Cov(Y, b|B)] ≤ 0. Then

Dl ≤ D ≤ Dp (1.4)

We provide the proof of this proposition, and derive similar results for the audit rate

estimators, in Appendix B.2.

Proposition 1 characterizes the bias of the probabilistic disparity estimator and the linear

disparity estimator.12 For the probabilistic disparity estimator to be asymptotically unbiased

(Proposition 1.1), it must be that any association between race and audits is mediated

through predicted race. In our setting, this condition would be violated if Black taxpayers

were selected for audit at different rates than non-Black taxpayers with identical names

and living in identical neighborhoods. Proposition 1.1 is related to a result in Chen et al.

(2019), which substitutes E[Cov(Y,B|Z)] for E[Cov(Y,B|b)] in our expression, similar to

conditioning on combinations of covariates in lieu of the propensity score. The difference

between the two expressions is significant in practice, since it may not be practical to calculate

Cov(Y,B|Z) when Z takes on many values, such as in the common circumstance in which

race is imputed from name and geography.

The linear disparity estimator requires different, but similarly strong, assumptions in

order for it to yield an unbiased estimate of the true audit rate disparity. In particular,

Proposition 1.2 shows that the linear disparity estimator is unbiased if and only if there is

no residual association between predicted race and audits after conditioning on the taxpayer’s

actual race. This condition can be thought of as the exclusion restriction that would apply

12In some applications, we consider weighted versions of these estimators; we discuss properties of weighted
probabilistic and linear disparity estimators in Appendix B.4.
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when using imputed race as an instrument to study the effect of self-reported race on audit

selection. In our setting, the linear disparity estimator may yield a biased estimate for the

true disparity if some of the information used to predict race – e.g., name – is associated

with audits through channels other than race, such as socioeconomic status.

Finally, Propositions 1.3 and 1.4 establish that the linear and probabilistic disparity

estimators (asymptotically) bound the true disparity when E[Cov(Y, b|B)] and

E[Cov(Y,B|b)] share the same sign.13 To understand the intuition, suppose that both

conditional covariance terms are positive. First, E[Cov(Y, b|B)] > 0 implies that the race

probabilities are (positively) correlated with the outcome through channels other than B,

so that regressing Y on b (as the linear disparity estimator does) yields an over-estimate for

the association between Y and B. Second, E[Cov(Y,B|b)] > 0 implies that the association

between B and Y is not perfectly mediated through b; hence, focusing only on the

mediated portion of the association (as the probabilistic disparity estimator does)

under-estimates the true association between B and Y . Thus, one can bound the true

disparity by combining the results of the two estimators.

In our setting, using geography and names to predict race, it is reasonable to expect

Proposition 1.3 to apply. For example, there are well-documented differences in marital

patterns by race, with rates of marriage among Black households below those of other

groups (Aughinbaugh et al., 2013). At the same time, unmarried taxpayers may be

associated with higher rates of EITC audit risk due to the residency and relationship tests

that govern the EITC qualifying child rules (Leibel et al., 2020). Hence, to the extent that

race predictions derived from name and geography do not fully capture racial differences in

household structure, it is likely that some residual correlation between audits and race

would remain, so that E[Cov(Y,B|b)] > 0. At the same time, some research shows that

individuals with more distinctively Black names have lower socioeconomic outcomes (Fryer

and Levitt, 2004; Cook et al., 2016). To the extent that audit rates are declining in income

13Appendix B shows that under the same conditions, the Black and non-Black audit rates are similarly
bounded by the linear and probabilistic audit rate estimators.
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for some portions of the income distribution (Black et al., 2022), this suggests that, even

after conditioning on race, taxpayers with higher predicted probabilities of being Black

may be audited at higher rates than taxpayers with lower predicted probabilities of being

Black, or E[Cov(Y, b|B)] > 0. Below, we provide empirical support for these conditions

using an auxiliary data set in which race is observed for a subset of taxpayers.

4 Data

This section describes the IRS data relating to audits and other tax variables as well as the

data we use to impute taxpayer race.

4.1 Tax Data

We begin with comprehensive, administrative, and anonymized IRS data from ∼148M

individual income tax returns with valid social security numbers for 2014. We focus on tax

year 2014 because it is the most recent year for which the vast majority of audits were

complete and available to us at the time of analysis. For each return, we observe the

amount and sources of reported income, deductions, and credits claimed. We also observe

information returns for each taxpayer, such as employer-reported wages on Form W-2, and

other administrative records, such as Social Security Administration data on gender and

year of birth.

Among the returns in our data, there were 780,627 operational audits, constituting 0.53%

of returns filed for the year. We also use data on the research audits conducted under the

NRP, which, as described in Section 2, are selected using a stratified random sample of

taxpayers. Between 2010 and 2014, there were between approximately 13,500 and 15,500

NRP audits per year. To increase the precision of our analyses that use NRP data, we use

the 71,878 returns selected for NRP audit between 2010 and 2014.
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For each filed return, we observe whether the return was selected for audit.14 In addition,

among audited returns, we observe the amount, if any, of the IRS-imposed adjustment to the

originally filed return. Throughout, we report quantities in 2014 dollars, inflation-adjusting

the NRP returns from prior years.

4.2 Race Data

As described above, the IRS does not systematically collect data on taxpayer race, either

directly via tax returns or indirectly via merging tax data with administrative data on race

from other agencies (Bearer-Friend, 2019). Instead, we rely on a BIFSG approach to estimate

the probability that a taxpayer is Black (and non-Hispanic) based on the first name, last

name, and location of the taxpayer.15 First and last names were obtained from the tax

return. The taxpayer’s location was measured at the level of the Census Block Group, the

smallest geographic unit with racial composition reported by the Census, which typically

contain 600-3,000 individuals.16 Data on the joint distribution of first names and race were

obtained from Loan Application Registers under the Home Mortgage Disclosure Act from

2007-2010, following Tzioumis (2018); data on the joint distribution of last names and race

were obtained from the 2010 Decennial Census Surname File (U.S. Census Bureau, 2021); and

data on the racial make-up of Census block groups from the American Community Survey

5-year estimates (2010-2014). Information regarding the availability of these characteristics

in our sample is described in Appendix Table A.2. We are able to estimate race probabilities

based on all three attributes (first name, last name, and geolocation) for 73% of tax year

2014 returns. For the remaining returns, we use a subset of these attributes to impute race.

We exclude taxpayers for whom no race probabilities could be assigned because the address

could not be geocoded to a specific Census Block Group and neither first name nor last name

14More precisely, we observe whether the return was selected for audit prior to 2021. Nearly all audits are
initiated within six years of a return being filed.

15The steps of these analyses requiring non-anonymized taxpayer information were conducted by Treasury
economists, with the (anonymized) results provided to the other members of our research team.

16Addresses were mapped to Census Block Groups using an algorithm developed by Geoffrey Gee for the
Treasury Department Office of Tax Analysis.
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was available in our race-by-name datasets (0.2% of 2014 returns).

To assess the validity of our estimated race probabilities and the statistical bias of our

audit disparity estimators, we obtained data on self-reported race for a subset of our

sample by matching taxpayers to publicly available voter registration records from North

Carolina. North Carolina required all registered voters to report race until 1993, after

which reporting became optional. Taxpayer and voter records were matched using name

and address, which resulted in a 47% unique match rate and ∼2.5M matched records.17 In

some of the calibration exercises using this data, we re-weight North Carolina taxpayers to

match the overall U.S. population on observable demographic characteristics. Appendix C

provides additional details regarding the data match and the construction of these weights.

5 Race Estimate Calibration and Statistical Bias

Assessment

This section presents results relating to the calibration of our taxpayer race estimates and

potential biases of the audit rate disparity estimators on which we rely.

5.1 Taxpayer Race Estimates

As described above, we calculate the predicted probability that a taxpayer is Black based

on the taxpayer’s first name, last name, and geography. Figure 1 summarizes the results

of this exercise. The left panel of the figure presents the distribution of estimated race

probabilities. The distribution is bi-modal, with 4.4% of taxpayers having 90% or higher

predicted probability of being Black and 77.0% of taxpayers having 10% or lower predicted

probability of being Black. The mean prediction is 12.2%, which corresponds closely to the

12.2% of the overall U.S. population that was estimated to be Black by the U.S. Census in

17Matching took place in a fire-walled environment, separately from the main analysis, under the direction
of the Treasury Office of Tax Analysis. Information relating to voting and political party were excluded from
all analyses.
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2014 (ACS, 2014).

The right panel of Figure 1 assesses the calibration of the estimated race probabilities.

It uses the matched North Carolina data to compare the true probability that a taxpayer

identifies as Black with the BIFSG-predicted probability that the taxpayer does so. The

figure shows that the predicted race probabilities are generally monotonic in true

self-reported race and generally track the 45-degree line. We observe a similar pattern for

the sub-population of taxpayers claiming the EITC, although here we observe some

evidence that BIFSG may under-estimate the probability a taxpayer is Black; we explore

several re-calibration methods below to address this issue. Overall, to the extent our

matched North Carolina sample is representative of the population, this analysis suggests

that the BIFSG-derived race estimates constitute a reasonably accurate approach for

estimating taxpayer race in this setting (see Appendix Table A.3 for additional detail).

Below, we consider several robustness checks that employ alternative methods for

calculating race probability estimates and obtain qualitatively similar results.

5.2 Assessing Bias of the Audit Disparity Estimators

In this section we use the North Carolina data to shed light on the statistical bias of the

audit disparity estimators described above.

To visualize these quantities, Figure 2 bins the taxpayers from the North Carolina data

set based on the estimated probability of being Black, and plots the fraction of Black and

non-Black taxpayers audited within each bin. The figure shows a positive residual

correlation between audit probability and being Black after conditioning on the estimated

race probability. From Proposition 1.1, this implies that the probabilistic disparity

estimate is downward-biased, i.e., E[Cov(Y,B|b)] > 0. At the same time, the figure

suggests an upward-sloping audit rate in predicted race, for both Black and non-Black

taxpayers, after conditioning on self-reported race, or E[Cov(Y, b|B)] > 0. From

Proposition 1.2, this implies that the linear disparity estimator is upward-biased.
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Appendix Table A.4 reports the results of a more formal test for the sign of the key

covariance terms. To estimate E[Cov(Y, b|B)], we use the North Carolina data to directly

calculate the covariance between audits and predicted race probabilities, separately for Black

and non-Black taxpayers. We aggregate these estimated covariances into an estimate of

E[Cov(Y, b|B)] by weighting each race-specific covariance by the estimated proportion of

all taxpayers that are Black or non-Black, respectively. We reject the null hypothesis that

E[Cov(Y, b|B)] ≤ 0 with p < 0.01. In other words, our results suggest that the estimated

race probabilities are positively correlated with audits, even after conditioning on the portion

of the association due to race.

In similar fashion, we estimate E[Cov(Y,B|b)] by calculating the sample covariance

between audits and self-reported race separately for each estimated race probability

percentile, and then aggregate based on the estimated share of taxpayers with each race

probability percentile. We reject the null hypothesis that E[Cov(Y,B|b)] ≤ 0 with p < 0.01.

We obtain similar results when we re-weight the North Carolina data to match the U.S.

population on a range of observable characteristics (Column 2 of Appendix Table A.4) and

when we restrict the analysis to EITC claimants (Columns 3 and 4). In contrast, for the

non-EITC population (Columns 5 and 6), we are unable to sign these covariance terms with

statistical significance.

We interpret the results in this subsection to support the hypothesis that

E[Cov(Y,B|b)] > 0 and E[Cov(Y, b|B)] > 0 for EITC taxpayers and the overall population,

and therefore, that the probabilistic and linear disparity estimators bound the true audit

rate disparity for these populations.

6 Audit Disparity Results

In this section, we report our estimates of the difference in audit rates between Black and

non-Black taxpayers. We begin with the overall population of U.S. taxpayers before turning
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Figure 1: Distribution and Calibration of Race Imputations

Notes: Left: Nationwide histogram of BIFSG-predicted probability that a taxpayer is Black (non-Hispanic).
The mean prediction is 12.4%. Right: The figure shows the calibration of the BIFSG imputations for the
taxpayers in the matched North Carolina data set. Taxpayers are split into groups based on their predicted
probability of being Black (discretized into 100 bins 1 percentage point wide). The predicted probability of
being Black is on the x-axis; the y-axis represents the true proportion of each group that is Black according
to ground-truth race observed in the North Carolina matched sample, re-weighted to be representative of
the overall United States (see Appendix C.2 for details). A perfectly calibrated predictor would fall exactly
on the 45-degree line, shown as the black dotted line. The figure shows overall calibration in blue as well as
calibration among EITC claimants (dark green) and non-EITC claimants (light green).

to EITC claimants.

6.1 Overall Audit Disparity

Figure 3 presents our main findings concerning racial audit disparities for the population

of U.S. taxpayers. The left panel plots the mean audit rate against the binned estimated

probability that a taxpayer is Black. The upward-sloping relationship shown in the figure

suggests that Black taxpayers are audited at a higher rate than non-Black taxpayers.

The right panel of Figure 3 depicts the estimated audit rates among Black and non-

Black taxpayers, respectively, obtained from the probabilistic and linear disparity estimators.

Both estimators imply that Black taxpayers were audited at a higher rate than non-Black

taxpayers. In particular, the probabilistic estimator implies a racial audit disparity of 0.81

percentage points: 1.24% of Black taxpayers were audited, compared to 0.43% of non-Black

taxpayers. These audit rates are precisely estimated: the 95% confidence interval on the
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Figure 2: Audit Rate by Predicted Race Conditional on Self-Reported Race

Notes: The figures show the relationship between audit incidence and BIFSG-predicted probability that a
taxpayer is Black for taxpayers filing returns for tax year 2014. Audit incidence is plotted separately for
Black and non-Black taxpayers in the North Carolina matched sample. Black and non-Black taxpayers are
each grouped into 100 equal-sized bins, with Black taxpayers indicated by dark purple x’s and non-Black
taxpayers indicated by light purple circles.

probabilistic disparity estimate ranges from 0.81 to 0.82 percentage points.18 As expected,

the linear estimator implies an even larger racial audit disparity, of 1.34 percentage points,

and is also precisely estimated. Appendix Table A.5 provides additional details. Because the

conditions for Proposition 1.3 appear satisfied in our setting, we interpret the probabilistic

and linear disparity estimates as bounds on the true racial audit disparity. Thus, our results

suggest that Black taxpayers were audited at between 2.9 and 4.7 times the rate of non-Black

taxpayers.

Figure 4 plots estimated audit rates by income and race. Black taxpayers appear more

18This confidence interval reflects sampling uncertainty, in the sense that even the universe of 2014
taxpayers may not perfectly reflect the underlying data generating process. We continue to obtain statistically
precise results when incorporating uncertainty stemming from imperfect measurement of taxpayers’ race; see
Appendix Figure A.1.
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Figure 3: Estimated Audit Rates by Race

Notes: The figure shows the relationship between audits and race among taxpayers filing returns for tax
year 2014. Left: Binned scatterplot of audit rate by BIFSG-predicted probability that a taxpayer is Black.
Taxpayers have been grouped into 100 equal-sized bins. Right: Estimated audit rates among Black and non-
Black taxpayers, calculated using the probabilistic audit rate estimator and the linear disparity estimator with
BIFSG-predicted probabilities. Error bars show the 95% confidence interval, derived from the asymptotic
distributions described in Appendix B.3.

heavily audited throughout the income distribution.19 Notably, the difference in audit rates

appears largest for taxpayers with incomes that potentially qualify for the EITC. To more

directly explore the role of the EITC in the observed racial audit disparity, we investigate

differences in audit rates by EITC claim status as well as differences in EITC claiming

by race. The right panel of Appendix Figure A.3 shows that the audit rate among EITC

claimants is more than 4 times higher than among non-EITC claimants (1.45 vs. 0.31 pp).

In addition, the left panel of the figure shows that the EITC claim rate is increasing in the

probability that a taxpayer is Black. Hence, one possibility is that the observed difference

in audit rates could be due to EITC claimants being audited at higher rates and Black

taxpayers being over-represented among that group.

To assess this hypothesis, we estimate audit disparities by race separately for EITC

claimants and non-claimants. If differences in EITC claiming rates by race account for

the racial disparity, we would expect the racial disparity to be relatively small within the

population of EITC claimants. However, Figure 5 shows this is not the case. The estimated

19For ease of exposition, we focus on the more conservative probabilistic estimate of the disparity, which
constitutes a lower bound in our setting. Appendix Figure A.2 shows a similar pattern using the linear
disparity estimator.
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Figure 4: Audit Rates by Income and Race

Notes: The figure shows the estimated audit rate among Black and non-Black taxpayers filing returns for
tax year 2014. Income is measured according to the adjusted gross income (AGI) reported on the taxpayer’s
return (i.e., prior to audit adjustments). Binned audit rates by race are determined using the probabilistic
estimator; Appendix Figure A.2 reports the corresponding analysis, but with audit rates estimated using the
linear disparity estimator. The sample is limited to taxpayers reporting non-negative AGI. Taxpayers have
been grouped into 20 equal-sized bins, based on their AGI. To facilitate presentation, the x-axis limited to
taxpayers with reported AGI under $200,000. Error bars show the 95% confidence interval, derived from the
asymptotic distributions described in Appendix B.3.

disparity in audit rates between Black and non-Black EITC claimants is substantially larger

(between 1.96 and 2.90 p.p.) than the estimated disparity for the full population (between

0.81 pp and 1.34 p.p.). In contrast, we estimate significantly smaller racial audit disparities

among taxpayers not claiming the EITC (between 0.10 and 0.18 p.p.).20

We can formally decompose the overall audit disparity into the following three

components: (1) racial differences in the audit rate among EITC claimants; (2) racial

differences in the audit rate among EITC non-claimants; and (3) racial differences in the

20These disparities are precisely estimated; refer to columns 2 and 3 of Appendix Table A.5 for standard
errors. As discussed in Section 5, we lack empirical evidence that the linear disparity estimator yields an
upper bound on the racial audit disparity for EITC non-claimants. In our linked North Carolina data set
containing self-reported race, the true racial audit disparity for this group is slightly larger than, but similar
in magnitude to, the disparity obtained from the linear disparity estimator.
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Figure 5: Estimated Audit Rates by Race and EITC Claim Status

Notes: The figure shows the relationship between audits and race among taxpayers filing returns for tax year
2014, broken out by whether a taxpayer claims the EITC in that year. Left: Binned scatterplot of audit
rate by BIFSG-predicted probability Black by EITC claim status, with EITC claimants and non-claimants
each grouped into 100 equal-sized bins based on their estimated probability of being Black. EITC claimants
are represented by dark green dots and non-claimants by light gray x’s. Right: Estimated audit rate by
race and EITC claim status, calculated using the probabilistic audit rate estimator and the linear audit rate
estimator with BIFSG-predicted probabilities. Error bars show the 95% confidence interval, derived from
the asymptotic distributions described in Appendix B.3.

rate at which taxpayers claim the EITC, scaled by differences in the audit rate for EITC

versus non-EITC returns (see Appendix D for details). We estimate that the racial audit

disparity within EITC returns contributes 78% of the overall disparity. The remainder is

due to disproportionate auditing of EITC returns (14%), and to a lesser extent, disparities

in audit selection among non-EITC returns (8%).21

We next explore the type of audits from which the disparity arises. Appendix Table

A.6 shows that audit disparities appear to be largely driven by differences in the selection of

correspondence audits, whereas Black and non-Black taxpayers appear to be selected for field

and office audits at similar rates. We observe disparities in both pre-refund and post-refund

audits, although the magnitude is larger in the former than in the latter even once we limit

consideration to correspondence audits. Although audit disparities are largely concentrated

among EITC claimants, correspondence audits appear to drive the smaller disparity we

21Note that the large contribution of the within-EITC disparity to the overall-population disparity is partly
due to the relatively large share of audits that involve EITC-claiming returns; if this fraction was reduced,
the percentage contribution of the within-EITC disparity would be reduced.
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observe among non-claimants as well.

Finally, we conduct several analyses to assess the robustness of our disparity estimate.

First, recall that 27% of the taxpayers in our sample are missing one or more of the

variables used to impute race. Column 1 of Appendix Table A.7 re-estimates the racial

audit disparity after excluding this group; the results are largely unchanged. Second, as an

alternative to BIFSG, we re-estimate predicted race using additional individual

characteristics and relaxing the naive Bayes independence assumption with Gibbs sampling

(see Appendix B.6 for details). The resulting disparity estimate is similar to our main

findings (Column 2). Third, our BIFSG race probability estimates are derived from

samples that are designed to be representative of the overall U.S. population, not the

subset of the population that files taxes or claims the EITC. If this causes our race

probability estimates to be mis-calibrated, it could bias our disparity estimates. In

Appendix B, we formally derive this bias and use the result to re-calibrate our race

probability estimates, treating the North Carolina data as ground truth. Again, the results

are largely unchanged from our baseline analysis (Columns 3 and 4 of Appendix Table

A.7). Last, our results thus far have focused on tax returns filed for 2014. To confirm the

patterns we observe are not limited to that year, we estimate disparity among all taxpayers

(Appendix Figure A.4) and among EITC claimants (Appendix Figure A.5) for tax years

2010, 2012, 2016, and 2018. In each case, we obtain similar results as for 2014.

6.2 Disparity Among EITC Claimants

Because the racial audit disparity appears concentrated among EITC claimants, our

remaining analyses home in on this population of taxpayers.

Figure 6 reports estimates of the conditional audit disparity among various demographic

sub-populations of EITC claimants. We observe significant absolute and relative disparities

by race among unmarried EITC claimants, particularly unmarried men. Strikingly, among

unmarried EITC claimants with dependents, the audit rate for Black men is over 4 percentage
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Figure 6: Audit Rate Disparities by EITC Subgroup

Notes: The figure shows the estimated audit rate among the specified subgroups of Black and non-Black
taxpayers. Conditional audit rates by race are calculated using the probabilistic audit rate estimator applied
to BIFSG-predicted probabilities that a taxpayer is Black. Panel (1) splits EITC claimants by single vs
joint filers; (2) splits single EITC claimants by taxpayer gender; and (3) splits single men claiming the EITC
by whether they claim dependents. A similar analysis, corresponding to the linear disparity estimator, is
presented in Appendix Figure A.6

points larger than the audit rate for non-Black men, and both are an order of magnitude

larger than the audit rate for the overall U.S. population. In contrast, we observe smaller (but

still positive) racial audit disparities among joint filers, unmarried women, and unmarried

men who do not claim dependents (although the ratio of audit rates among Black to non-

Black taxpayers remains substantial among these groups).

The fact that the disparities persist after conditioning on these demographic

characteristics suggests that racial differences in the distribution of these characteristics are

not sufficient to explain the observed disparity in audits. Similarly, differences in audit

rates by race among EITC claimants persist when flexibly controlling for income, family

composition, or their interaction (Appendix Table A.8).

To better understand the source of the observed racial audit disparity, we next explore
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whether it can be explained by group-level differences in tax underreporting between Black

and non-Black taxpayers. By underreporting, we refer to the difference between a taxpayer’s

correct federal income tax obligations for a year (which may be negative in the case of a

taxpayer qualifying for refundable credits) and the federal tax obligations reported on the

taxpayer’s return. For example, underreporting may arise from reporting too little income,

too many deductions, or from claiming a tax credit for which the taxpayer does not qualify.

Underreporting may be intentional or inadvertent, and may be due to decisions by either

the taxpayer or a tax preparer.

A challenge in exploring whether differences in underreporting are generating the

observed disparity in audit rates is that we observe underreporting only among those

taxpayers who were selected for audit. However, we can circumvent this obstacle by

combining NRP and operational audit data. That is, using Bayes rule, we can express the

audit rate for a given group (j) and amount of underreporting (k) as:

Pr[Y = 1|B = j,K = k] = Pr(K = k|Y = 1, B = j)
Pr(Y = 1|B = j)

Pr(K = k|B = j)
.

From this, we can estimate the racial audit disparity at a given level of underreporting

using the disparity estimators along with the operational audit data results reported in

Figure 3 for Pr(Y = 1|B = j); the NRP data to estimate Pr(K = k|B = j); and the

detected underreporting from the operational audit results to estimate Pr(K = k|Y =

1, B = j).22 See Appendix B.7 for further details. The results of this analysis are presented

in Figure 7, with EITC claimants binned according to their underreported taxes. The

distribution of underreporting among Black taxpayers appears shifted to the right relative

to non-Black taxpayers. However, within each underreporting bin, the estimated audit rate

for Black taxpayers exceeds that of non-Black taxpayers, and for many bins, the difference

22With respect to the last of these, operational audits may not detect all of a taxpayer’s underreporting
because unlike the NRP, such audits do not assess each issue on the return. In practice, this concern is
lessened by the fact that the issues worked by operational audits tend to be those where underreporting is
suspected.
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Figure 7: Racial Audit Disparity Among EITC Claimants by Underreported Taxes

Notes: The figure shows the estimated audit rates for Black and non-Black EITC claimants, respectively, by
under-reported taxes. Taxpayers are binned into 11 categories: those with less than $1 of under-reporting,
and 10 equal deciles of taxpayers with positive under-reporting. Under-reporting deciles are defined based
on the NRP. Bin labels on the x-axis reflect the upper dollar limit of each underreporting bin (rounded
for confidentiality). Estimated audit rates by race are calculated using the probabilistic disparity estimator
and the method described in Section 6 of the main text. All analyses account for NRP sampling weights.
Brackets reflect the estimated 95% confidence interval, derived from bootstrapped standard errors (N=100).
The bars show the estimated share of Black and non-Black taxpayers, respectively, that fall into each under-
reporting bin. A similar analysis, corresponding to the linear disparity estimator, is presented in Appendix
Figure A.7.

is substantial. We interpret this result as evidence that the observed audit rate disparity

cannot be entirely explained by group-level differences in underreporting by race.

7 Factors that May Influence Disparity

To better understand how alternative policies may shape racial disparities in audit rates, we

next consider the role of several factors: (1) differences by race in the distribution of tax

underreporting; (2) differences by race in the distribution of predicted tax underreporting; (3)

the objective of the prediction model used to allocate audits; and (4) operational decisions

that govern the allocation of audits across categories of returns. The models we will use

to study these questions do not aim to replicate IRS’s existing operational audit selection
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processes, which are confidential. Rather, we build our own (counterfactual) risk prediction

models to enable us to study various audit policy design choices. All of the algorithms

considered in this section are trained and evaluated using returns that were randomly selected

for inclusion into the NRP. We restrict our focus to audits of EITC returns, as our earlier

results show their out-sized role in driving status quo audit disparities.

In measuring the racial audit disparity that an algorithm would produce, we focus on

the results given by the probabilistic disparity estimator. As discussed above, this approach

likely yields a conservative estimate of the racial audit disparity in our setting. We obtain

qualitatively similar results using the linear disparity estimator (reported in Appendix A).

7.1 Does Maximizing Detected Underreporting Generate a Racial

Disparity?

We first investigate the racial audit disparity that would result if taxpayers could be

selected for audit in descending order of the true amount of their under-reported taxes. By

under-reported taxes, we refer to any additional tax liability uncovered during the NRP

audit process.23 If this approach generated significant racial disparities, it would suggest a

fundamental trade-off between detecting under-reported taxes and avoiding racial

disparities in audit selection.

To study this question, we employ an “oracle” audit selection algorithm, which prioritizes

returns for audit according to the total dollar amount of underreporting that would be found

if the return was audited. Specifically, we rank taxpayers based on their under-reported taxes

and then, in descending order, select taxpayers for audit until some pre-specified audit rate

has been reached. For each audit rate that we consider, we calculate (1) total (annualized)

23Although they are intensive, even NRP audits may miss some underreporting, and differential mis-
measurement of underreporting by race could distort our results (e.g., Obermeyer et al., 2019). However,
the factors that have been found to induce inaccuracies in NRP audit results are concentrated at the top of
the income distribution (Guyton et al., 2021); hence, we do not expect this concern to be important for the
EITC population – our focus here. Note also that detected underreporting is distinct from revenue to the
agency; for example, the former does not account for whether the detected underreporting is collected from
the taxpayer or incorporate IRS administrative costs incurred by conducting the audit.
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detected underreporting by summing the audit adjustments for the selected taxpayers, and

(2) the racial audit disparity that would be induced by this selection process.24 We focus

on oracle-induced disparities rather than simple comparisons of underreporting by group in

order to capture the relevant decision margin at operationally relevant audit rates (Simoiu

et al., 2017).

Figure 8 shows the results of this analysis. At each rate considered, the oracle selects

Black taxpayers for audit at a lower rate than non-Black taxpayers. For comparison, the

detected underreporting and disparity from audits of EITC returns for 2014 (the “status

quo”) are marked by the dashed red lines. At the status quo audit rate of 1.45%, the oracle

obtains much more detected underreporting (as expected), while selecting Black taxpayers

at a lower rate than non-Black taxpayers. Because the oracle represents an upper bound on

the under-reported taxes that an audit algorithm can detect, these results suggest it may

be possible to reduce racial audit disparities without sacrificing on the accuracy of audit

selection.

7.2 Does Selection Based on Predicted Underreporting Generate

a Racial Disparity?

The previous subsection provides evidence that selecting audits according to underreporting

amount would not result in Black taxpayers being audited at higher rates than non-Black

taxpayers. In practice, of course, the amount of underreporting that would be detected on

audit is unavailable at the time the audit decision is made. We now ask whether the same

pattern holds when audits are selected according to predicted underreporting. To study

this question, we train a random forest model to predict taxpayer underreporting based on

features that the tax authority can observe at the time of the audit decision, and simulate

selecting taxpayers in descending order of this prediction, until some specified audit rate

24Throughout, we use “detected underreporting” as shorthand for total recommended adjustments from
audit, not accounting for appeals or rates of collection. We provide additional details for how we calculate
annualized detected underreporting using NRP sample weights in Appendix F.
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Figure 8: Detected Underreporting and Disparity by Algorithm

Notes: The figure shows the estimated difference in audit rates between Black and non-Black taxpayers
(y-axis) and annualized detected underreporting (x-axis) under alternative models for selecting EITC audits
and under alternative audit rates. Models are trained and evaluated on the set of NRP EITC claimants from
2010-14; see Appendix F for details. The displayed trajectories correspond to the oracle (blue), random forest
regressor (purple), random forest classifier (green), and refundable credit models (light purple). The labeled
points along each trajectory represent estimated detected underreporting and disparity for the specified
model at the audit rate specified in the label. The audit rates considered range from 0.1% to 3%. The audit
rate corresponding to the status quo (1.45%) is denoted by a larger dot. The regression model is trained
to predict underreporting. The classification model is trained to predict whether or not underreporting
exceeds $100. The oracle selects returns in descending order of true underreporting. The refundable credit
model is trained to predict total adjustments to EITC, CTC, and AOTC amounts. Disparity is calculated
using the probabilistic disparity estimator; Appendix Figure A.8 replicates this analysis using the linear
disparity estimator. Annualized detected underreporting is calculated as the total detected underreporting
(positive or negative) imposed on returns selected for audit under the specified audit selection model, scaled
to reflect our use of five years of NRP data. The point labeled “Status quo” shows estimated disparity and
total underreporting from the 1.45% of EITC returns selected for audit from the population of tax year
2014 returns. All analyses incorporate NRP sampling weights. Bars around each trajectory represent 95%
confidence intervals around disparity estimates; they are calculated using the standard deviation of estimated
disparity across 100 bootstrapped samples from the full set of NRP EITC claimants; see Appendix F for
details.
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has been reached. The model is trained on NRP EITC returns to predict underreporting

as closely as possible; hence, it is a “regression model,” in the sense that its objective is

to predict the expected dollar value of underreporting, not merely the presence or absence

thereof.25 The model incorporates the same type of features used by the DIF and DDb

programs to select EITC audits – information reported on tax returns supplemented with

additional administrative data available to the IRS. For additional details on the model,

refer to Appendix F.

The detected underreporting and disparity induced by the random forest regressor model

at various audit rates are shown by the dashed purple line in Figure 8. Unsurprisingly, the

regressor achieves significantly less detected underreporting than the oracle at any given audit

rate, but like the oracle, the regressor selects Black taxpayers for audit at lower rates than

non-Black taxpayers for the range of audit rates we consider. The random forest regressor

model detects roughly twice as much underreporting as the status quo at the same audit

rate; in so doing it audits Black taxpayers at a lower rate than non-Black taxpayers. Hence,

the fact that IRS does not observe true underreporting does not, in itself, appear to explain

the status quo disparity in EITC audits.26

7.3 Does Prediction Model Objective Shape Racial Disparity?

We next explore how the objective of the prediction model that is used to select audits

shapes the racial audit disparity. First, we investigate the effect of allocating audits based

on algorithms trained to predict a binary versus continuous measure of underreporting

(classification versus regression). Second, we investigate the effect of focusing audits on

predicted underreporting due to over-claimed refundable credits.

25This use of the word regression (common in the machine learning literature) differs from how the term
is typically employed in the economics and statistics literatures, and does not refer to a linear regression.

26We also investigated whether disparity would be affected by allocating audits based on actual or predicted
underreporting net of IRS audit costs. Fully accounting for audit costs is beyond the scope of this project;
for example, there may be fairness concerns with auditing those taxpayers less likely to vigorously contest
their assessment. In any event, Appendix Figure A.9 shows that accounting for heterogeneous auditing costs
at the level of the activity code does not appear to greatly affect the disparity induced by either the oracle
or regressor model at any of the audit budgets we consider.
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7.3.1 Classification versus Regression

In this section, we compare risk models trained to predict the expected dollar amount of

underreporting versus models trained to predict a binary indicator for the presence of any

underreporting. Models trained for the latter task (i.e., “classification models”) may yield

fewer false positives but also tend to detect less total underreporting.27

To study these questions, we train a random forest classifier on the NRP data to predict

whether a taxpayer under-reports by at least $100, using the same features that were used

to build the regression model.28 In Figure 8, the classifier corresponds to the solid green line.

Across audit rates, the classifier yields lower detected underreporting than the regressor, as

expected. With respect to disparity, the difference between the models is stark; whereas the

regression model selects Black taxpayers at lower rates than non-Black taxpayers (and at

similar rates as the oracle), the classifier selects Black taxpayers at higher rates than non-

Black taxpayers. The difference between the disparity induced by the classifier and regressor

models at the status quo audit rate is statistically significant (p < 0.001).

To better understand the audit rate disparity induced by the classifier, we derive the

following decomposition (see Appendix E for details):

D = cB (fB − fNB) + (1− cB) (sB − sNB) + (cNB − cB)(sNB − fNB)

where cj denotes the share of group j that is compliant (defined as having underreporting less

than $100); fj denotes the false positive rate for group j (i.e., the share of compliant taxpayers

in group j that are selected by the algorithm for audit); and sj denotes the sensitivity for

group j (the share of non-compliant taxpayers in group j selected by the algorithm for audit).

In words, the audit rate disparity can be expressed as the sum of three terms: the first is

27Black et al. (2022) compares the distributional effects by income of audit selection algorithms informed by
classification versus regression models. Apart from the distribution of audited taxpayers, the two approaches
may also differ in their deterrence effects, with regression models providing more deterrence against large
evaders and classification models providing more deterrence to those who would evade by small amounts.

28For additional details on the random forest classification model, refer to Appendix F. We obtain
qualitatively similar results with other non-zero classification thresholds (Appendix Figure A.10).
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proportional to group differences in the share of compliant taxpayers selected for audit; the

second is proportional to group differences in the share of non-compliant taxpayers selected

for audit; and the final term is proportional to the difference in the mean compliance rates

between groups. Appendix Table E.1 applies this decomposition to the audit rate disparity

induced by the classifier model described in this section. The vast majority of exam-rate

disparity (73%) is attributable to differences in the model’s sensitivity to non-compliance by

Black versus non-Black taxpayers – i.e., to the fact that non-compliant Black taxpayers are

more likely to be audited than non-compliant non-Black taxpayers. A smaller portion (25%)

of the disparity is attributable to group differences in the rate of non-compliance, with the

remaining 2% attributable to group differences in the algorithm’s false positive rate.

7.3.2 Targeting Refundable Credits

This section explores a different component of the prediction model objective: whether audits

are allocated based on total predicted underreporting or based on the portion of predicted

underreporting that is due to over-claiming of refundable tax credits. Although a dollar of

detected underreporting is worth the same whether it arises from underreported income or

over-claimed credits, the agency may prioritize enforcement activity around the latter due

to various policy or political considerations.

To explore this issue, we train a random forest regression model as above, except that

we now train the model to predict the sum of NRP adjustments to the three refundable

credits designated by OMB as high-priority program susceptible to significant improper

payments: the EITC, the Additional Child Tax Credit, and the American Opportunity

Tax Credit. We then allocate audits in descending order of the predicted refundable credit

over-claim, up to the specified audit budget. The results are shown as the light purple line

in Figure 8. Compared to the baseline regression model trained on total underreporting,

the model trained on refundable credit over-claims achieves substantially less total detected

underreporting, indicating that over-claims of refundable credits are not the only important
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source of underreporting even among EITC claimants. Even more striking is the difference

between the models with respect to disparity: the model trained on refundable credits selects

Black taxpayers at a higher rate for all audit budgets we consider.

Based on the results in Sections 7.3.1 and 7.3.2, we conclude that the objective of the

prediction model used for audit selection may be one factor shaping the observed racial audit

disparity.

7.4 Do Audit Allocation Constraints Generate a Racial Disparity?

As discussed in Section 2, some elements of the audit selection process are based on

considerations distinct from the output of algorithmic prediction models, such as allocation

decisions based on agency resource constraints like examiner expertise, audit costs, or other

policy goals. To investigate the role of one such allocation policy in producing audit rate

disparities, we focus on the allocation of audits across the two activity codes into which

EITC tax returns are categorized: returns with substantial business income (activity code

271) and returns without substantial business income (activity code 270).29 Audits of

non-business EITC returns tend to focus on issues relating to credit eligibility rules, such

as whether EITC qualifying children were properly claimed, whereas audits of EITC

returns in the business income category are more likely to focus on verifying reported

income and claimed deductions.

While non-business audits constitute 93% of EITC audits, they would comprise only 21%

of EITC audits if our random forest regression model was used as the basis for selection.

Operational constraints (e.g., the grade, experience, subject-matter focus, and training of

available examiners) could push toward selecting a larger share of non-business (activity

code 270) than business (activity code 271) returns, at least in the short term. In addition,

we estimate Black taxpayers constitute 21% of non-business EITC returns versus 11% of

business EITC returns (Appendix Figure A.11). Hence, by shifting the allocation of EITC

29EITC claimants are classified in Activity Code 271 if their gross receipts on Schedule C or F exceed
$25,000.

38



audits, operational constraints could affect the distribution of audits by race.

To explore this possibility, we consider versions of the counterfactual algorithms explored

thus far that are constrained to select the status quo ratio of business to non-business EITC

returns for audit. Appendix Figure A.12 plots the detected underreporting and disparity

associated with these constrained models, and with their unconstrained analogs, at the

status quo EITC audit rate.30 For each model, imposing the status quo allocation constraint

reduces detected underreporting (as expected) and results in a larger share of Black taxpayers

being selected for audit. These results therefore suggest that operational considerations of

the form described above can contribute to higher audit rates for Black taxpayers. At the

same time, the disparity induced by the constrained classifier and constrained refundable

credit models remain higher than that induced by the constrained regressor (p < 0.001),

suggesting that algorithmic design may continue to play an important role once operational

considerations are taken into account.

8 Discussion

In this paper, we have presented evidence that Black taxpayers are audited at higher rates

than non-Black taxpayers, and that this disparity is primarily due to differences in the

audit rate between Black and non-Black EITC claimants. Using counterfactual audit

selection algorithms, we explored some of the potential factors that might contribute to or

alleviate this disparity. Our results suggest that audit disparities are not driven exclusively

by racial differences in the distribution of underreporting or in the distribution of

underreporting that can be predicted based on the information that IRS observes. Instead,

we find that the objective of the predictive model underlying audit selection, as well as

operational considerations relating to the complexity of audited tax returns, can be critical

drivers of disparity.

30Appendix Figure A.13 shows the detected underreporting and disparity induced by the constrained
models at varying audit rates.
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Concretely, these results suggest potential avenues through which the IRS may –

depending on its current confidential practices – be able to alleviate racial audit disparities:

shifting from more classification- to regression-based prediction algorithms, equally

prioritizing underreporting from refundable credits and other sources, and expending

agency resources to accommodate auditing more complex EITC returns. At the same time,

some of the factors we identify are shaped by forces outside the IRS’s control. For example,

Congress determines the information reported to the IRS by third parties – which shapes

the distribution of non-compliant taxpayers that classification models identify – the rules

governing credit eligibility – which may contribute to more mistakes among Black

taxpayers due to racial differences in family structure – and IRS funding levels – which

shapes the ability of the agency to allocate resources to complex cases.

We note several limitations to our work. First, we have focused our investigation on

audit disparities for Black taxpayers, which has been the subject of significant scholarly

and policy interest. Yet there is comparable interest in disparities for other racial and

ethnic groups, with potentially differing causes and opportunities for mitigation.

Investigating those disparities is an important avenue for future work, to which our

methods can readily be extended. Second, we have focused on the trade-off between racial

disparities and detected underreporting, but policymakers may prioritize other objectives

as well, such as deterring non-compliant behavior, avoiding audits on compliant taxpayers,

transparency, and promoting a fair distribution of audited returns by income. Relatedly,

our analysis of counterfactual audit algorithms does not account for the full set of

constraints facing tax authorities like the IRS, such as the types of compliance issues that

can be explored through correspondence audit, or differences in audit response rates

depending on whether the audit is pre- versus post-refund. A more complete optimal

policy analysis would require accounting for these additional objectives and constraints.

Finally, audit selection constitutes only one dimension in which tax administration may

differently affect taxpayers by race. Disparities may also exist with respect to such
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processes as collections, appeals, settlements, and guidance (Bearer-Friend, 2021; Book,

2021). The approach described in this paper can serve as a foundation to explore

disparities in these areas as well.
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A Additional Tables and Figures

Figure A.1: Statistical Variation of Imputation-Based Disparity Estimates

Notes: The figure shows statistical variation in the estimated audit rate disparity as estimated by the method
of composition (Tanner, 1996); it captures uncertainty both due to measurement uncertainty (uncertainty
around true race) as well sampling variability (i.e. the probabilistic nature of an audit). To obtain these
estimates, we begin with the operational audit data and construct a counterfactual data set. This data set
is constructed by realizing, for every individual, a Bernoulli-drawn indicator for Black self-report status with
probability given by each individual’s BIFSG-predicted probability of Black self-report status (but leaving
the audit status as is). Given this counterfactual data set, we re-estimate the Black/non-Black disparity
using linear regression with a dummy; we can interpret the coefficient and standard deviation as parameters
for a posterior distribution on disparity given this counterfactual data set. We then draw an observation
from a normal distribution with mean and variance parameterized accordingly, and save this observation as
a single realized disparity estimate. We then repeat this entire process 100 times, obtaining a histogram and
fitting a normal distribution to these drawn observations to obtain overall uncertainty. The panels show the
disparity estimate distributions generated as the outcome of this process estimated for all 2014 taxpayers,
EITC claimants, and non-EITC claimants, respectively. The y-axis reports the frequency of the disparity
estimates displayed in percentage points on the x-axis.
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Figure A.2: Audit Rate Disparity by Income (Linear Estimator)

Notes: The figure shows the estimated disparity in audit rates, using the linear disparity estimator, between
Black and non-Black taxpayers across bins of reported Adjusted Gross Income (AGI) for returns filed in
tax year 2014. Taxpayers are grouped into 20 equal-sized bins. Disparity is calculated within each bin from
the linear disparity estimator applied to BIFSG-derived probabilities that a taxpayer is Black. The x-axis
is limited to returns that report AGI under $200,000. The shaded area around the line shows the 95%
confidence interval, derived from the asymptotic distributions described in Appendix B.3.

Figure A.3: Estimated Audit Rates by EITC Claim Status

Notes: The figure shows the relationship between audits and EITC claim status among taxpayers filing
returns for tax year 2014. Left: Binned scatterplot of EITC claim rate by BIFSG-predicted probability that
a taxpayer is Black. Taxpayers have been grouped into 100 equal-sized bins. Right: Audit rates among
EITC claimants and non-EITC claimants.
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Figure A.4: Estimated Audit Rate Disparity by Year

Notes: The figure reports the estimated audit rates among Black and non-Black taxpayers for tax years
2010, 2012, 2014, 2016, and 2018, calculated using the probabilistic audit rate estimator applied to BIFSG-
predicted probabilities (calculated using the data sources described in Section 4.2). “Ratio” refers to the
ratio of the estimated Black audit rate to the estimated non-Black audit rate.

Appendix-3



Figure A.5: Estimated Audit Rate Disparity Among EITC Claimants by Year

Notes: The figure reports the estimated audit rates among Black and non-Black EITC claimants for tax
years 2010, 2012, 2014, 2016, and 2018, calculated using the probabilistic audit rate estimator applied to
BIFSG-predicted probabilities (calculated using the data sources described in Section 4.2). “Ratio” refers
to the ratio of the estimated Black audit rate to the estimated non-Black audit rate.
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Figure A.6: Audit Rate Disparities by EITC Subgroup (Linear Estimator)

Notes: The figure shows the estimated audit rate among the specified subgroups of Black and non-Black
taxpayers. Conditional audit rates by race are calculated using the linear audit rate estimator applied to
BIFSG-predicted probabilities that a taxpayer is Black. Panel (1) splits EITC claimants by single vs joint
filers; (2) splits single EITC claimants by taxpayer gender; and (3) splits single men claiming the EITC by
whether they claim dependents.
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Figure A.7: Racial Audit Disparity Among EITC Claimants by Underreported Taxes (Linear
Estimator)

Notes: The figure shows the estimated audit rates for Black and non-Black EITC claimants, respectively, by
under-reported taxes. Taxpayers are binned into 11 categories: those with less than $1 of under-reporting,
and 10 equal deciles of taxpayers with positive under-reporting. Under-reporting deciles are defined based on
the NRP. Estimated audit rates by race are calculated using the linear disparity estimator and the method
described in Section 6 of the main text. All analyses account for NRP sampling weights. Brackets reflect
the estimated 95% confidence interval, derived from bootstrapped standard errors (N=100). The bars show
the estimated share of Black and non-Black taxpayers, respectively, that fall into each under-reporting bin.
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Figure A.8: Detected Underreporting and Disparity by Algorithm (Linear Estimator)

Notes: The figure shows the implied difference in audit rates between Black and non-Black taxpayers (y-
axis) and annualized detected underreporting (x-axis) under alternative models for selecting EITC audits
and under alternative audit rates. The trajectories correspond to the oracle (blue), random forest regressor
(purple), and random forest classifier (green) models. The labeled points along each trajectory represent
estimated detected underreporting and disparity for the specified model at the audit rate specified in the
label. For each model, the audit rates considered range from 0.1% to 3%; the audit rate corresponding to the
status quo (1.45%) is denoted by a larger dot. The regression model is trained to predict total adjustments.
The classification model is trained to predict whether or not total adjustments exceed $100. The oracle selects
returns according to their true underreporting. Disparity is calculated from the linear disparity estimator
applied to BIFSG-derived probabilities that a taxpayer is Black. Annualized detected underreporting is
calculated as the total amount of adjustments (positive or negative) imposed on returns selected for audit
under the specified audit selection model. Detected underreporting and disparity estimates are constructed
using the full set NRP EITC claimants from 2010-14. Details relating to the predictive models and associated
estimates are contained in Appendix F. The point labeled “Status quo” shows the estimated disparity in audit
rates between Black and non-Black taxpayers and detected underreporting from the 1.45% of EITC returns
selected for audit from the population of tax year 2014 returns. All analyses incorporate NRP sampling
weights. Bars around each trajectory represent 95% confidence intervals around disparity estimates; they
are calculated using the standard deviation of estimated disparity across bootstrap samples from the full set
of NRP EITC claimants; see Appendix F for details. The p-value for the difference in disparity induced by
the classifier and regressor models at the status quo EITC audit rate is less than 0.001; it is obtained from
the distribution of the difference in audit rates for Black and non-Black taxpayers from each bootstrapped
sample.
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Figure A.9: Allocating Audits Based on Underreporting Net of Audit Costs

Notes: The figure shows the implied difference in audit rates between Black and non-Black taxpayers (y-
axis) and annualized detected underreporting (x-axis) under alternative assumptions about whether returns
are selected for audit based on detected underreporting (gross of audit costs, as in our other analyses) or
based on detected underreporting minus expected audit costs. Underreporting is based on either the oracle
or the random forest regressor model, as specified. Audit costs are measured at the activity code level,
using data on the time spent on audit examination and the salary grade of the examiner, and abstracting
from non-salary costs associated with the enforcement process, such as appeals, litigation, and collections,
or fixed costs, such as overhead. Using this approach, the average cost of auditing an EITC business return
(activity code 270) is $385, whereas the average cost of auditing an EITC non-business return (activity
code 271) is $29. The labeled points along each trajectory represent estimated detected underreporting and
disparity for the specified model at the audit rate specified in the label. Disparity is calculated from the
probabilistic disparity estimator applied to BIFSG-derived probabilities that a taxpayer is Black. For each
model, the audit rates considered range from 0.1% to 3%; the audit rate corresponding to the status quo
(1.45%) is denoted by a larger dot. Annualized detected underreporting is calculated as the total amount of
adjustments (positive or negative) imposed on returns selected for audit under the specified audit selection
model. Detected underreporting and disparity estimates are constructed using the full set NRP EITC
claimants from 2010-14. Details relating to the predictive models and associated estimates are contained in
Appendix F. The point labeled “Status quo” shows the estimated disparity in audit rates between Black and
non-Black taxpayers and detected underreporting from the 1.45% of EITC returns selected for audit from
the population of tax year 2014 returns. All analyses incorporate NRP sampling weights.
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Figure A.10: Detected Underreporting and Disparity by Classifier Threshold

Notes: The figure shows the implied difference in audit rates between Black and non-Black taxpayers (y-
axis) and annualized detected underreporting (x-axis) for random forest classification models trained on
alternative dollar thresholds, under the assumption that 1.45% of the EITC population is selected for audit.
Each point corresponds to a different classification model, trained to predict whether or not total adjustments
exceed the specified dollar threshold. The solid dots correspond to models that are constrained to match
the status quo allocation of audits between EITC business and non-business activity codes, as described in
Section 3.4. The hollow dotes indicate unconstrained models. Disparity is calculated from the probabilistic
disparity estimator applied to BIFSG-derived probabilities that a taxpayer is Black. Annualized detected
underreporting is calculated as the total amount of adjustments (positive or negative) imposed on returns
selected for audit under the specified audit selection model. Detected underreporting and disparity estimates
for all models are constructed using the full set of NRP EITC observations from 2010-14. Details relating
to the predictive models and associated estimates are contained in Appendix F. The point labeled “Status
quo” shows the estimated disparity in audit rates between Black and non-Black taxpayers and detected
underreporting from the 1.45% of EITC returns selected for audit from the population of tax year 2014
returns. All analyses incorporate NRP sampling weights.
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Figure A.11: Racial Composition of EITC Activity Codes

Notes: The figure shows the share of taxpayers who are Black and non-Black across the two activity codes into
which EITC tax returns are categorized: returns with substantial business income (activity code 271) and
returns without substantial business income (activity code 270). Shares are estimated using the probabilistic
estimator described in Section 3.3.
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Figure A.12: Effect of Audit Allocation Constraints on Detected Underreporting and
Disparity

Notes: The figure shows the implied difference in audit rates between Black and non-Black taxpayers (y-axis)
and annualized detected underreporting (x-axis) for alternative audit selection models, under the assumption
that 1.45% of the EITC population is selected for audit. The points correspond to the unconstrained oracle
(light blue), constrained oracle (dark blue), unconstrained random forest regressor (light purple), constrained
random forest regressor (dark purple), unconstrained random forest classifier (light green), constrained
random forest classifier (dark green), unconstrained refundable credit regressor (gray), and constrained
refundable credit regressor (black) models at the status quo EITC audit rate of 1.45%. The random forest
models are regression models (i.e., they are trained to predict total adjustments). “Constrained” indicates
that the model’s allocation of audits between EITC business and non-business activity codes is constrained
to match the status quo allocation. Disparity is calculated from the weighted disparity estimator applied
to BIFSG-derived probabilities that a taxpayer is Black. For a similar analysis using the linear disparity
estimator, see Appendix Figure A.14. Annualized detected underreporting is calculated as the total amount
of adjustments (positive or negative) imposed on returns selected for audit under the specified audit selection
model. Detected underreporting and disparity estimates for all models are constructed using the full set of
NRP EITC observations from 2010-14. Details relating to the predictive models and associated estimates
are contained in Appendix F. The point labeled “Status quo” shows the estimated disparity in audit rates
between Black and non-Black taxpayers and detected underreporting from the 1.45% of EITC returns selected
for audit from the population of tax year 2014 returns. All analyses incorporate NRP sampling weights.
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Figure A.13: Detected Underreporting and Disparity by Algorithm (Constrained Models)

Notes: The figure shows the implied difference in audit rates between Black and non-Black taxpayers (y-
axis) and annualized detected underreporting (x-axis) under alternative models for selecting EITC audits
and under alternative audit rates, where each model’s allocation of audits between EITC business and non-
business activity codes is constrained to match the status quo allocation. The trajectories correspond to
the oracle (blue), random forest regressor (purple), and random forest classifier (green) models. The labeled
points along each trajectory represent estimated detected underreporting and disparity for the specified
model at the audit rate specified in the label. For each model, the audit rates considered range from 0.1% to
3%; the audit rate corresponding to the status quo (1.45%) is denoted by a larger dot. The regression model
is trained to predict total adjustments. The classification model is trained to predict whether or not total
adjustments exceed $100. The oracle selects returns according to their true underreporting. Disparity is
calculated from the probabilistic disparity estimator applied to BIFSG-derived probabilities that a taxpayer
is Black. Annualized detected underreporting is calculated as the total amount of adjustments (positive
or negative) imposed on returns selected for audit under the specified audit selection model. Detected
underreporting and disparity estimates are constructed using the full set NRP EITC claimants from 2010-
14. Details relating to the predictive models and associated estimates are contained in Appendix F. The point
labeled “Status quo” shows the estimated disparity in audit rates between Black and non-Black taxpayers
and detected underreporting from the 1.45% of EITC returns selected for audit from the population of tax
year 2014 returns. All analyses incorporate NRP sampling weights. Bars around each trajectory represent
95% confidence intervals around disparity estimates; they are calculated using the standard deviation of
estimated disparity across bootstrap samples from the full set of NRP EITC claimants; see Appendix F
for details. The p-value for the difference in disparity induced by the classifier and regressor models at the
status quo EITC audit rate is less than 0.001; it is obtained from the distribution of the difference in audit
rates for Black and non-Black taxpayers from each bootstrapped sample.
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Figure A.14: Effect of Audit Allocation Constraints on Detected Underreporting and
Disparity (Linear Estimator)

Notes: The figure shows the implied difference in audit rates between Black and non-Black taxpayers (y-axis)
and annualized detected underreporting (x-axis) for alternative audit selection models, under the assumption
that 1.45% of the EITC population is selected for audit. The points correspond to the unconstrained oracle
(light blue), constrained oracle (dark blue), unconstrained random forest regressor (light purple), constrained
random forest regressor (dark purple), unconstrained random forest classifier (light green), constrained
random forest classifier (dark green), unconstrained refundable credit regressor (gray), and constrained
refundable credit regressor (black) models at the status quo EITC audit rate of 1.45%. The random forest
models are regression models (i.e., they are trained to predict total adjustments). “Constrained” indicates
that the model’s allocation of audits between EITC business and non-business activity codes is constrained to
match the status quo allocation. Disparity is calculated from the linear disparity estimator applied to BIFSG-
derived probabilities that a taxpayer is Black. Annualized detected underreporting is calculated as the total
amount of adjustments (positive or negative) imposed on returns selected for audit under the specified audit
selection model. Detected underreporting and disparity estimates for all models are constructed using the
full set of NRP EITC observations from 2010-14. Details relating to the predictive models and associated
estimates are contained in Appendix F. The point labeled “Status quo” shows the estimated disparity in
audit rates between Black and non-Black taxpayers and detected underreporting from the 1.45% of EITC
returns selected for audit from the population of tax year 2014 returns. All analyses incorporate NRP
sampling weights.
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Table A.1: Audit Frequency by Timing and Type

Panel A: EITC Population
Correspondence Field/Office All Audit Types

Pre-Refund 270,940 0 270,940
(66.4%) (0%) (66.4%)

Post-Refund 112,689 24,361 137,050
(27.6%) (6.0%) (33.6%)

All Audit Times 383,629 24,361 407,990
(94.0%) (6.0%) (100%)

Panel B: Activity Code 270
Correspondence Field/Office All Audit Types

Pre-Refund 260,841 0 260,841
(67.8%) (0%) (67.8%)

Post-Refund 109,549 14,355 123,904
(28.5%) (3.7%) (32.2%)

All Audit Times 370,390 14,355 384,745
(96.3%) (3.7%) (100%)

Panel C: Activity Code 271
Correspondence Field/Office All Audit Types

Pre-Refund 4,922 0 4,922
(27.6%) (0%) (27.6%)

Post-Refund 2,943 9,959 12,902
(16.5%) (55.9%) (72.4%)

All Audit Times 7,865 9,959 17,824
(44.1%) (55.9%) (100%)

Notes: The table reports the frequency of audits of 2014 tax returns by audit timing (whether the audit
occurred pre- or post-refund) and by audit type (whether the audit was conducted by correspondence or as a
field or office examination). Panel A reports audit frequencies for all taxpayers claiming the EITC; Panels B
and C are limited to EITC claimants who fall into activity codes 270 (gross business income below $25,000)
and 271 (gross business income above $25,000), respectively.
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Table A.2: Coverage of BIFSG Features Among 2014 Taxpayers

Case Count First Name Last Name CBG Share of Total

1 107,624,714 X X X 72.6%
2 10,087,515 X X 6.8%
3 10,455,708 X X 7.1%
4 14,981,324 X X 10.1%
5 2,572,849 X 1.7%
6 1,431,541 X 1.0%
7 903,311 X 0.6%
8 248,356 0.2%
Total 148,305,318 100%

Notes: The table shows the availability of the data used to calculate race probabilities for primary filers on
tax year 2014 returns. Our main sample is constituted by rows 1 through 7. The distribution of race by first
name is tabulated from mortgage applications, following Tzioumis (2018); it is missing for names not among
the 4,250 most common names in that data. The distribution of race by last names is tabulated from 2010
Census data and includes the 162,253 most common surnames. The distribution of race by Census Block
Group (CBG) is tabulated from the Census 2014 5-Year American Community Survey and covers all CBGs.
CBG data is missing for taxpayers who cannot be reliably geo-coded to a specific CBG.
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Table A.3: Calibration Metrics for BIFSG Predictions.

Full Population EITC Population
Metric Imputed Recalibrated Imputed Recalibrated

(1) (2) (3) (4)

Area Under ROC Cruve 0.9048 0.9048 0.9038 0.9038

Panel A: 50% Threshold
False Positive 0.0880 0.06317 0.1119 0.1181
True Positive 0.6804 0.6066 0.7237 0.7377
False Negative 0.3196 0.3934 0.2763 0.2623
True Negative 0.9120 0.9368 0.8881 0.8819
Precision 0.6529 0.7002 0.8002 0.7946
Recall 0.6804 0.6066 0.7237 0.7377
Accuracy 0.8667 0.8722 0.8252 0.8268

Panel B: 75% Threshold
False Positive 0.0338 0.0112 0.05036 0.0504
True Positive 0.4740 0.2822 0.5169 0.5170
False Negative 0.5260 0.7178 0.4831 0.4830
True Negative 0.9662 0.9888 0.9496 0.9496
Precision 0.7733 0.8598 0.8641 0.8641
Recall 0.4740 0.2822 0.5170 0.5170
Accuracy 0.8699 0.8506 0.7842 0.7842

Panel C: 90% Threshold
False Positive 0.0114 - 0.0216 0.0191
True Positive 0.2855 - 0.3180 0.2946
False Negative 0.7145 - 0.6820 0.7054
True Negative 0.9886 - 0.9784 0.9809
Precision 0.8588 - 0.9013 0.9053
Recall 0.2855 - 0.3180 0.2946
Accuracy 0.8511 - 0.7259 0.7184

Notes: The table characterizes the predictive power of BIFSG as measured in the North Carolina data
through various metrics which capture different aspects of performance. We use columns to demarcate
different versions and comparing against different populations: Columns 1 and 3 correspond to the standard
BIFSG score, while Columns 2 and 4 correspond to the re-calibrated BIFSG score (described in Section B.5);
and Columns 1 and 2 are evaluations against the full population, while in Columns 3 and 4 are evaluations
against only the EITC claimant population. We use rows to demarcate each error metric. The first error
metric we consider, the Area Under the Receiver Operator Characteristic (ROC) curve, requires as input
only the probabilistic predictions and labels; the other metrics, which are classification-based, require discrete
label choices. We thus convert BIFSG scores into predicted labels of Black/non-Black via thresholding, i.e.
labeling all observations with predicted probability Black of t or greater as Black and all others as non-Black.
We consider thresholds at 50%, 75%, and 90%, demarcated by Panels A-C.
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Table A.4: Residual Covariance Estimates

Full Population EITC Non-EITC

E[cov(Y,B)|b] 5.76∗∗∗ 5.05∗∗∗ 14.68∗ 13.39∗ 1.65 1.20
(1.95) (1.90) (8.00) (7.92) (1.32) (1.12)

E[cov(Y,b)|B] 2.03∗∗∗ 2.28∗∗∗ 8.76∗∗∗ 9.62∗∗∗ 0.004 -0.3
(0.20) (0.33) (0.91) (1.35) (0.13) (0.24)

Weighted x x x
N 1,613,130 277,064 1,336,062

Notes: The table displays the estimated covariance between audits and self-reported race, conditional on
estimated race, as well as the estimated covariance between audits and estimated race, conditional on self-
reported race. The estimates are for the matched sample of North Carolina taxpayers for the full population
(columns 1 and 2), EITC claimants (columns 3 and 4), and non-EITC claimants (columns 5 and 6). Columns
2, 4, and 6 are re-weighted to be representative of the U.S. population, using the weights described in
Appendix C.2. Standard errors are displayed in parentheses. The displayed estimates and standard errors
are multiplied by 104. Stars correspond to p-values derived from one-sided hypothesis tests. ∗ : P < .10;∗∗ :
P < .05;∗∗∗ : P < .01.
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Table A.5: Linear and Probabilistic Disparity Estimates

Estimator Full Population EITC Non-EITC
(1) (2) (3)

Linear 1.344 2.900 0.185
(0.004) (0.009) (0.003)

Probabilistic 0.813 1.960 0.104
(0.003) (0.008) (0.002)

N 148,305,318 28,145,049 118,936,909

Notes: The table shows estimated audit rate disparities using both the linear and the probabilistic estimators.
Units are percentage points (0-100). The Black/non-Black audit disparity is shown for the full population
(column 1), the EITC population (column 2) as well as the non-EITC population (column 3). Standard
errors, reported in parentheses, are calculated from the asymptotic distributions described in Appendix B.3.
Each displayed disparity estimate is in terms of percentage points and is statistically different from zero
(p < .01).
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Table A.6: Audit Disparity by Audit Timing and Audit Type

Audit Timing Audit Type
Estimator Pre Post Correspondence Field/

Refund Refund Office
(1) (2) (3) (4)

Panel A: Full Population
Linear 0.941 0.403 1.328 0.016

(0.003) (0.002) (0.004) (0.001)
Probabilistic 0.569 0.244 0.804 0.010

(0.002) (0.002) (0.003) (0.001)
N 148,305,318 148,305,318 148,305,318 148,305,318

Panel B: EITC Population
Linear 2.194 0.706 2.890 0.010

(0.008) (0.005) (0.009) (0.002)
Probabilistic 1.483 0.477 1.953 0.007

(0.007) (0.004) (0.008) (0.001)
N 28,145,049 28,145,049 28,145,049 28,145,049

Panel C: Non-EITC Population
Linear 0.010 0.174 0.160 0.025

(0.001) (0.002) (0.002) (0.001)
Probabilistic 0.006 0.099 0.090 0.014

(0.001) (0.002) (0.002) (0.001)
N 118,936,909 118,936,909 118,936,909 118,936,909

Notes: The table shows estimated audit rate disparity by audit timing (pre-refund or post-refund audits,
in columns 1 and 2) and by audit type (correspondence or field/office audits, in columns 3 and 4). In each
column, the outcome is a binary indicator for being selected for the specified category of audit. Units are
percentage points (0-100). Audit rate disparities are presented for both the linear and the probabilistic
estimator. Standard errors, reported in parentheses, are calculated from the asymptotic distributions
described in Appendix B.3. Each displayed disparity estimate is in terms of percentage points and is
statistically different from zero (p < .01).
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Table A.7: Audit Disparity Robustness Checks

BIFSG Gibbs Re-calibrated Re-calibrated
Unweighted Weighted

(1) (2) (3) (4)

Panel A: Full Population
Linear 1.30 1.57 1.623 1.543

(0.005) (0.04) (0.005) (0.004)
Probabilistic 0.811 1.04 0.774 0.735

(0.004) (0.04) (0.003) (0.003)
N 107,624,714 1,379,130 148,305,318 148,305,318

Panel B: EITC population
Linear 3.01 2.83 3.50 3.33

(0.01) (0.08) (0.01) (0.01)
Probabilistic 2.15 2.04 1.853 1.816

(0.01) (0.07) (0.008) (0.008)
N 19,234,523 281,297 28,145,049 28,145,049

Panel C: Non-EITC Population
Linear 0.176 0.17 0.223 0.212

(0.003) (0.03) (0.003) (0.002)
Probabilistic 0.106 0.10 0.099 0.093

(0.002) (0.02) (0.002) (0.002)
N 87,632,261 1,097,833 118,936,909 118,936,909

Notes: The table shows the estimated audit rate disparity from the linear and probabilistic disparity
estimators, under various modifications to our baseline approach. Units are percentage points (0-100).
Heteroskedasticity-robust standard errors, reported in parentheses, are calculated from the asymptotic
distributions described in Appendix B.3. Column 1 restricts the analysis to the subset of taxpayers for
which each of first name, last name, and census block group are available. Column 2 predicts taxpayer
race using the Gibbs sampling approach described in Appendix B.6. Column 3 predicts taxpayer race after
re-calibrating the race probability estimates using the North Carolina data, as described in Appendix C.
Column 4 replicates Column 3, but re-weights the data to be representative of the full population using the
North Carolina weights described in Appendix Section C.2. Panel A shows results for the full population;
Panel B for the EITC population; and Panel C for the non-EITC population. Each displayed disparity
estimate is in terms of percentage points and is statistically different from zero (p < .01).
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Table A.8: Effect of Controls on Estimated Disparity in EITC Audit Rates.

Baseline Income Marital Status Income Percentiles
Percentiles x x

EITC Dependents Marital Status
x

EITC Dependents
(1) (2) (3) (4)

Disparity 2.900 2.635 2.381 2.072
(0.009) (0.009) (0.009) (0.009)

N 28,145,049 28,145,049 28,145,049 28,145,049

Notes: The table reports the coefficient on a taxpayer’s estimated race from a linear regression of audit
status on estimated race and the specified controls. Units are percentage points (0-100). The analysis is
restricted to the EITC population. Heteroskedasticity-robust standard errors are reported in parentheses.
Column 1 shows the baseline disparity (without additional controls). Column 2 includes fixed effects for
income percentiles. Column 3 includes controls for family size (marital status interacted with the number
of children claimed for the EITC). Column 4 includes each interaction of family size and income (marital
status by children claimed by income percentile). Each displayed disparity estimate is statistically different
from zero (p < .01).
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B Additional Results Relating to Disparity Estimation

In this section, we provide additional results relating to disparity estimation. We first derive
the BIFSG equation. We then provide a proof of Proposition 1 as a special case of a
more general result, allowing for mis-calibration of the estimated taxpayer race probabilities
(B.2). We next discuss statistical inference, and provide the asymptotic distributions of the
linear and probabilistic disparity estimators (B.3). Third, we consider weighted versions of
the linear and probabilistic disparity estimators (B.4). Finally, as a robustness check, we
consider a linear re-calibration exercise for the estimated taxpayer race probabilities, using
the North Carolina data as ground truth (B.5).

B.1 Results Relating to BIFSG Estimator

To derive Equation (1), use Bayes rule to write:

Pr[B|F, S,G] =
Pr[F, S,G|B] Pr[B]

Pr[F, S,G]

=
Pr[F |B] Pr[S|B] Pr[G|B] Pr[B]

Pr[F, S,G]

where the second equation follows from the “naive” conditional independence assumption
underlying the approach. Equation (1) then follows by dividing Pr[B = 1|F, S,G] by Pr[B =
0|F, S,G], and using the fact that Pr[B = 1|F, S,G] + Pr[B = 0|F, S,G] = 1.

In the Census data we use to estimate BIFSG scores, we observe Pr[B|S] rather than
Pr[S|B], and we cannot back out Pr[B|S] due to censoring of uncommon surnames. Hence,
the actual BIFSG scores we estimate are derived from

Pr[B|F, S,G] =
Pr[F |B] Pr[B|S] Pr[G|B] Pr[S]

Pr[F, S,G]

Dividing Pr[B = 1|F, S,G] by Pr[B = 0|F, S,G] leads the (unobserved) Pr[S] terms to
cancel, and following the same procedure as above we obtain:

Pr[B = 1|F, S,G] =
Pr[F |B = 1] Pr[B = 1|S] Pr[G|B = 1]∑1
j=0 Pr[F |B = j] Pr[B = j|S] Pr[G|B = j]

which we use to estimate taxpayer-level race probabilities.

B.2 Proof of Proposition 1

Recall Proposition 1:

Proposition 1. Suppose that b is a taxpayer’s probability of being Black given some
observable characteristics Z, so that b = Pr[B = 1|Z]. Define Dp as the asymptotic limit of

the probabilistic disparity estimator, D̂p, and Dl as the asymptotic limit of the linear

disparity estimator, D̂l. Then:

Appendix-22



1.

Dp = D − E[Cov(Y,B|b)]
Var(B)

(1.1)

2.

Dl = D +
E[Cov(Y, b|B)]

Var(b)
(1.2)

3. Suppose E[Cov(Y,B|b)] ≥ 0 and E[Cov(Y, b|B)] ≥ 0. Then

Dp ≤ D ≤ Dl (1.3)

4. Suppose E[Cov(Y,B|b)] ≤ 0 and E[Cov(Y, b|B)] ≤ 0. Then

Dl ≤ D ≤ Dp (1.4)

Proposition 1 follows from the more general Proposition 2, given below. Before stating
and proving it, we state and prove a lemma showing that Dp = Dl · Var(b)

E[b](1−E[b])
(under the

mild condition that b be almost surely nontrivial; in practice, observations for which b is 0
or 1, i.e. ground truth is available, can be analyzed separately).

Lemma 1. Suppose that 0 < b < 1 almost surely, and that E|Y | is finite. Then as sample
size grows, the probabilistic estimator converges almost surely to:

Dp = Dl ·
Var(b)

E[b](1− E[b])

Proof. We can write Dp as:

Dp =

∑
i biYi∑
i bi
−
∑

i(1− bi)Yi∑
i 1− bi

=
1
n

∑
i biYi

1
n

∑
i bi
−

1
n

∑
i(1− bi)Yi

1
n

∑
i(1− bi)

For both the numerator and denominator, the strong law of large numbers holds (since E|Y |
is finite and, since 0 < b < 1, E|bY | also is also finite), so the numerator and denominator of
each of the two terms converge almost surely to their expectations. Since 0 < b < 1 almost
surely, the continuous mapping theorem gives that ratio of the terms converges to the ratio
of their limits. That is:[ 1

n

∑
i biYi

1
n

∑
i bi
−

1
n

∑
i(1− bi)Yi

1
n

∑
i(1− bi)

]
a.s.−→

n→∞

[
E[bY ]

E[b]
− E[(1− b)Y ]

E[1− b]

]
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Now, simply combining fractions, we note:

E[bY ]

E[b]
− E[(1− b)Y ]

E[1− b]
=

E[bY ]− E[b]E[bY ]− E[b]E[Y ] + E[b]E[bY ]

E[b](1− E[b])

=
E[bY ]− E[b]E[Y ]

E[b](1− E[b])

=
Cov(Y, b)

E[b](1− E[b])

Finally, we recall that Dl = Cov(Y,b)
Var(b)

by construction; substituting in Cov(Y, b) = DlVar(b)
yields the result.

Proposition 2. Suppose that b is a (potentially imperfectly calibrated) estimate of the
probability that a taxpayer is Black, based on some observable characteristics Z. Let ε =
B − b denote the error in a taxpayer’s predicted race. Define Dp as the asymptotic limit

of the probabilistic disparity estimator, D̂p, and Dl as the asymptotic limit of the linear

disparity estimator, D̂l. Define µ = Cov(E[η|b],E[ε|b]), where η denotes the residual from
the linear projection of Y on b.

Then:

1.

Dl = D

(
1 +

Cov(b, ε)

Var(b)

)
+

E[Cov(Y, b|B)]

Var(b)

2.

Dp =
D · Var(B)−Dl · Cov(b, ε)

E[b](1− E[b])
− E[Cov(Y,B|b)] + µ

E[b](1− E[b])

Proof of Proposition 2. Consider the linear projections of Y on b and of Y on B:

Y = α + βb+ η

Y = α′ + γB + ν

By construction, Cov(b, η) = Cov(B, ν) = 0. In addition, E[ν] = 0, so

γ = E[Y |B = 1]− E[Y |B = 0] = D

Also, by construction:

γ Var(B) = Cov(Y,B)
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and similarly,

β Var(b) = Cov(Y, b)

Using the law of total covariance, we can write:

Cov(Y, b) = E[Cov(Y, b|B)] + Cov(E[Y |B], E[b|B])

The latter term can be expanded as:

Cov(E[Y |B], E[b|B]) = Cov(E[α′ + γB + ν|B], E[B − ε|B])

= Cov(α′ + γB + E[ν|B], B − E[ε|B])

= γVar(B)− γCov(B,E[ε|B]) + Cov(E[ν|B], B)− Cov(E[ν|B], E[ε|B])

= γVar(B)− γCov(B,E[ε|B])

where the last equality follows from the fact that since B is binary, Cov(B, ν) = 0 =⇒
E[ν|B] = 0 for all B.

Next, note that

Cov(B,E[ε|B]) = E[BE[ε|B]]− E[B]E[E[ε|B]]

= E[E[B ε|B]]− E[B]E[E[ε|B]]

= E[B ε]− E[B]E[ε]

= Cov(B, ε)

= Cov(b+ ε, ε)

= Cov(b, ε) + Var(ε)

Combining these results, we have:

β Var(b) = Cov(Y, b)

= E[Cov(Y, b|B)] + Cov(E[Y |B], E[b|B])

= E[Cov(Y, b|B)] + γ Var(B)− γ Var(ε)− γCov(b, ε)

From the definition of ε, we have:

Var(B) = Var(b) + Var(ε) + 2Cov(b, ε) =⇒ Var(B)− Cov(b, ε)− Var(ε) = Var(b) + Cov(b, ε)

Thus

β Var(b) = γ[Var(b) + Cov(b, ε)] + E[Cov(Y, b|B)]

and dividing through by Var(b) yields part 1 of the proposition.
To prove part 2 of the proposition, again use the law of total covariance:

Cov(Y,B) = E[Cov(Y,B|b)] + Cov (E[Y |b] , E[B|b])
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Expanding the second term of the right-hand side of the equation, we have

Cov (E[Y |b] , E[B|b]) = Cov (E[α + β b+ η|b] , E[b+ ε|b])
= Cov (α + β b+ E[η|b] , b+ E[ε|b])
= β Var(b) + βCov(b, E[ε|b]) + Cov(E[η|b], b) + Cov(E[η|b] , E[ε|b])

Note that:

Cov(b, E[ε|b]) = E[bE[ε|b]]− E[b]E[E[ε|b]]
= E[E[b ε|b]]− E[b]E[E[ε|b]]
= E[b ε]− E[b]E[ε]

= Cov(b, ε)

By the same logic:

Cov(E[η|b], b) = Cov(η, b) = 0

Define µ := Cov(E[η|b] , E[ε|b]). Then collecting results, we have

γ Var(B) = Cov(Y,B)

= E[Cov(Y,B|b)] + Cov (E[Y |b] , E[B|b])
= E[Cov(Y,B|b)] + β Var(b) + βCov(b, ε) + µ

Rearranging, and recalling that Dp = β Var(b)
E[b](1−E[b])

from Lemma 1 yields the result.

Now, we prove Proposition 1 as a consequence of Proposition 2.

Proof of Proposition 1. If b = Pr[B = 1|Z] = E[B|Z], it follows from the definition of ε that

E[ε|Z] = E[B|Z]− E[b|Z]

= E[B|Z]− E[E[B|Z]|Z]

= E[B|Z]− E[B|Z]

= 0

Hence, we can write

Cov(b, ε) = E[b ε]− E[b]E[ε]

= E[b ε]

= E[E[b ε|Z]]

= E[bE[ε|Z]]

= E[b 0]

= 0,
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where the third equality follows from the law of iterated expectations, and the fourth from
the fact that b is a function of Z.

Substituting the fact that Cov(b, ε) = 0 into Proposition 2.1, and noting that since
E[b] = E[E[B|Z]] = E[B],

E[b](1− E[b]) = E[B](1− E[B]) = Var(B).

yields Proposition 1.2.
Proposition 1.1 follows by again substituting in Cov(b, ε) = 0 and noting that E[ε|b] = 0

because:

E[ε|b] = E[E[ε|b, Z]|b]
= E[E[ε|Z]|b]
= E[0|b]
= 0,

where the second equality follows from the fact that b is a function of Z.
Finally, once the forms of Dl and Dp are established, Proposition 1.3 and 1.4 follow

directly when the respective assumptions on the signs of E[Cov(Y, b|B)] and E[Cov(Y,B|b)]
are met.

Proposition 3. (Statistical Bias of Audit Rate Estimators). Suppose b = Pr[B|Z]. Consider
the following estimators:

Ŷ B
p :=

∑
biYi∑
bi

and Ŷ NB
p :=

∑
(1− bi)Yi∑
(1− bi)

Ŷ B
l := α̂ + β̂ and Ŷ NB

l := α̂,

where α̂ and β̂ are the intercept and slope, respectively, from the regression of Y on b. Let
Y B
p ,Y NB

p , Y B
l , Y NB

l be the respective limits the estimators described above converge to.
Then:

1. Y B
l and Y NB

l have the following biases relative to the true audit rates Y B and Y NB:

Y B
l − Y B =

E[Cov(Y, b|B)]

E(B)
and Y NB

l − Y NB = −E[Cov(Y, b|B)]

1− E(B)

2. Y B
p and Y NB

p have the following biases relative to the true audit rates Y B and Y NB:

Y B
p − Y B = −E[Cov(Y,B|b)]

E[B]
and Y NB

p − Y NB =
E[Cov(Y,B|b)]

1− E[B]

3. Suppose E[Cov(Y, b|B)] = 0. Then:

Y B
l = Y B and Y NB

l = Y NB
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4. Suppose E[Cov(Y,B|b)] = 0. Then:

Y B
p = Y B and Y NB

p = Y NB

Proof. Notice that 3) and 4) follow directly from 1) and 2). For 1): By construction, we
have

Y = α + γB + ν

From this, we know Y NB = α and Y B = α + γ.
Taking expectations, and rearranging:

Y NB = α = E[Y ]− γ E[B]

In contrast, our sample estimate of Y NB from the linear disparity estimator, Ŷ NB
l , is

given by:

Ŷ NB
l = α̂ = Y − β̂ b

which converges to

Y NB
l = E[Y ]−DlE[b] = E[Y ]−Dl E[B],

since E[b] = E[B] (because E[b] = EZ [Pr[B = 1|Z]] = E[B]).

From Proposition 1, we know Dl = γ + E[Cov(Y,b|B)]
Var(B)

Substituting this into the above, we have:

Y NB
l = E[Y ]− γ E[B]− E[B]

E[Cov(Y, b|B)]

Var(B)

= Y NB − E[Cov(Y, b|B)]

1− E(B)

Turning to Y B
l , we have

Ŷ B
l = α̂ + β̂

which converges to
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Y B
l = Y NB

l +Dl

=

(
α− E[B]

E[Cov(Y, b|B)]

Var(B)

)
+Dl

= α− E[B]
E[Cov(Y, b|B)]

Var(B)
+ γ +

E[Cov(Y, b|B)]

Var(B)

= α + γ + (1− E[B])
E[Cov(Y, b|B)]

Var(B)

= Y B +
E[Cov(Y, b|B)]

E(B)

We prove 2) in a very similar manner as the related statement is in Chen et al. (2019):
Note that:

Y B = E[Y |B = 1] =
E[Y B]

E[B]
=

E[E[Y B|b]]
E[B]

On the other hand,

Ŷ B
p =

1
n

∑
biYi

1
n

∑
bi
−→ E[Y b]

E[b]
:= Y B

p

since the law of large numbers applies to the numerator and the denominator separately
(and the boundedness away from the end of the interval guarantees that the limits of the
ratio converges to the ratio of the limits).

But E[b] = EZ [Pr[B = 1|Z]] = E[B], and
E[Y b] = E[E[Y b|b]] = E[bE[Y |b]] = E[E[B|b]E[Y |b]], so:

Y B
p − Y B =

E [E[Y |b]E[B|b]]
E[B]

− E[E[Y B|b]]
E[B]

= −E[Cov(Y,B|b)]
E[B]

where the second equality follows from the definition of conditional covariance. This
establishes the result for Y B

p . To see the analogous result for Y NB
p , let A = 1 − B and

a = b, and observe that −E[Cov(Y,A|a)] = E[Cov(Y,B|b)]. The result then follows in the
same manner as above.

B.3 Inference in finite samples

This section characterizes the asymptotic distributions of the Dl and Dp estimators

Call D̂n
l and D̂n

p the empirically-constructed linear and probabilistic estimators using a

sample size of n observations. (Dl and Dp as written above are what D̂n
l and D̂n

p converge
to as n→∞.)
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Lemma 2. For any fixed dataset, we relate D̂n
p and D̂n

l as:

D̂n
p = D̂n

l ·
1
n

∑
i b

2
i − b̄2

b̄(1− b̄)

And asymptotically,

D̂n
p → D̂n

l ·
Var(b)

E[b](1− E[b])
.

Proof. Notice that:

D̂n
p =

∑
biYi∑
bi
−
∑

(1− bi)Yi∑
1− bi

=
1
n

∑
biYi

1
n

∑
bi
−

1
n

∑
(1− bi)Yi

1
n

∑
(1− bi)

=
1
n

∑
biYi

b̄
−

1
n

∑
(1− bi)Yi
1− b̄

where we use ·̄ to indicate the sample average. We can then write:

1
n

∑
biYi

1
n

∑
bi
−

1
n

∑
(1− bi)Yi

1
n

∑
(1− bi)

−
1
n

∑
biYi

b̄
−

1
n

∑
(1− bi)Yi
1− b̄

=
1
n

∑
biYi − b̄

n

∑
biYi − b̄

n

∑
Yi + b̄

n

∑
biYi

b̄(1− b̄)

=
1
n

∑
biYi − b̄ȳ

b̄(1− b̄)

Now consider the regression estimator. By definition:

Dn
l =

∑
(bi − b̄)(yi − ȳ)∑

(bi − b̄)2
=

∑
biyi − b̄

∑
yi − ȳ

∑
bi + nb̄ȳ∑

(bi − b̄)2
=

1
n

∑
biYi − b̄ȳ

1
n

∑
(bi − b̄)2

But notice the numerator in both terms are the same. That is:

D̂n
p =

1
n

∑
(bi − b̄)2

b̄(1− b̄)
D̂n

l = CnD̂
n
l

where Cn =
1
n

∑
(bi−b̄)2

b̄(1−b̄) .

But now recall Slutsky’s theorem, which says that if An, Bn are random variables and
Bn → c for some constant c, then AnBn → Anc. In particular,

Cn −→
Var(b)

E[b](1− E[b])
.

The second half of the lemma follows.

The asymptotic distribution of D̂n
l is well understood, as it is the OLS estimator.
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Given the relationship between D̂n
p and D̂n

l shown above, it is mechanically true that D̂n
p

will, under the same conditions, be distributed normally as well. Formally:

Proposition 4. The asymptotic distribution of Dp
n is given by:

D̂n
p −Dp√

V n
l

Var(b)
E[b](1−E[b])

−→ N (0, 1)

where Dp = Cov(Y,b)
E[b](1−E[b])

and V n
l is the variance of D̂n

l .

B.4 Incorporating Sampling Weights into Disparity Estimation

In some of our analyses, we use data which is re-weighted to be representative of the full
population of U.S. taxpayers. D̂l can be naturally extended to incorporate sample weights
via weighted regression. How to extend the probabilistic estimator, however, may be less
obvious. We propose the following as the weighted probabilistic estimator D̂p,w:

Ŷ B
p,w =

∑
i ωibiYi∑
i ωibi

, Ŷ NB
p =

∑
i ωi(1− bi)Yi∑
i ωi(1− bi)

, D̂p,w := Ŷ B
p,w − Ŷ NB

p,w

where ωi is a sample weight for observation i. (Notice that as with Dp, replacing Yi with
any other random variable gives an estimator for disparity in said random variable.) This
estimator is closely related to the Horwitz-Thompson family of estimators; see Robinson
(1982); Berger (1998); Delevoye and Sävje (2020) for prior results regarding convergence and
consistency.

What is the purpose of the weighted estimator? The intention behind it is to use the
data we have to estimate what Dp would be given a different dataset or distribution. If D̂p,w

provides this fidelity, then it is the ‘correct’ weighted analogue. We show here that D̂p,w is
the ‘correct’ weighted analogue in a sense we make formal below.

We will distinguish between two cases. In the first, we have access to a subset of a
finite population of individuals, and are given replicate weights. The replicate weight for
observation i corresponds to the number of individuals in the full population that i represents.
In other words, we have some dataset of observations D := {Xi}ni=1, but the full dataset

which we do not have access to has observations D ′ :=
⋃

i{Xi}wi
j=1. The hope is that D̂p,w

estimated on D corresponds to D̂p estimated on D ′.

Proposition 5. Suppose we are in the case of replicate weights and D and D ′ are as above.
Let D̂p,w|D be estimated over D and D̂p|D ′ be what would be estimated over D ′. Then:

D̂p,w|D = D̂p|D ′

Proof. This follows simply from the linearity of the numerator and denominator of Ŷ B
p,w and
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Ŷ NB
p,w . Take Ŷ B

p,w:

Ŷ B
p,w|D =

∑
iwibiYi∑
iwibi

=

∑
i

∑wi

j=1 biYi∑
i

∑wi

j=1 bi
= Ŷ B

p |D ′.

Ŷ NB
p,w follows similarly and thus too D̂p,w.

Notice that the case of replicate weights corresponds to our analyses in which we use
NRP to estimate quantities over the population.

The second case is more general: weights may be not be integers corresponding the
number of people represented in some larger dataset, but rather changes of measure
intended to capture some other distribution. (For instance, weighting for non-response
attempts to map the data from responders to the overall population.) In this setting, we
are agnostic to how the weights are generated; instead, we merely assume that they
successfully accomplish re-weighting at the level of the sample mean. We make this precise
in the following proposition:

Proposition 6. Suppose we have data drawn from a distribution D; this data includes both
a quantity of interest, Yi, as well as sample weights ωi that map D to some other distribution
D′ in the following sense:

1

n

n∑
i=1

ωiQi
n→∞−→ ED′ [Q]],

for any random variable Q. Then:

D̂n
p,w|D

n→∞−→ Dp|D′.

Proof. Consider Ŷ B
p,w. Let Q := bY . Then by assumption:

1

n

[
n∑

i=1

ωibiYi

]
n→∞−→ ED′ [bY ]

Similarly,

1

n

n∑
i=1

ωibi
n→∞−→ ED′ [b]

But we have that:

Ŷ B,n
p,w =

∑
i ωibiYi∑
i ωibi

=
1
n

∑
i ωibiYi

1
n

∑
i ωibi

n→∞−→ ED′ [bY ]

ED′ [b]
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Proceeding similarly with Ŷ NB,n
p,w and taking the difference, we obtain:

D̂n
p,w

n→∞−→ ED′ [bY ]

ED′ [b]
− ED′ [(1− b)Y ]

ED′ [1− b]
= Dp|D′

Notice that the choice of unit weights, i.e. ωi = 1 satisfies the assumption of the theorem
and recovers the original convergence results. For another example, suppose we have groups
A and B in equal number throughout the population, but in our data we obtain twice as
many observations from group B as group A. Then it is easy to verify that the choice of

weights ωi =

{
2/3 i ∈ A
3/4 i ∈ B

would satisfy the assumptions, and thus this choice of weights

would allow us to recover Dp in the population from our data.

B.5 Re-calibrating a proxy for a robustness check

In general, we may not have access to b, but do have access to a re-calibrated b∗, i.e. the
linear projection of B on to the space of b and a constant. We can use this re-calibrated
proxy to obtain similar as those in Proposition 1 by again applying Proposition 2 and the
particulars of re-calibration.

To see this, note that by construction, Cov(b∗, ε∗) = 0, so Proposition 2 applies.
Moreover, E[b∗] = E[B], so E[b∗](1− E[b∗]) = E[B](1− E[B]) = Var(B). So designating D∗l
and D∗p as the linear and probabilistic estimators, respectively, applied to b∗, as well as η∗

and ε∗ for the analogues of η and ε, Proposition 2 indicates that:

D∗l = D +
E[Cov(Y, b∗|B)]

σ2
b∗

(2)

and

D∗p = D − E[Cov(Y,B|b∗)] + Cov(E[η∗|b∗],E[ε∗|b∗]
Var(B)

. (3)

These equations are as in the form of Proposition 1, but there are two apparent difficulties.
The first is that it might be more difficult to reason about the sign of the covariances between
outcome and re-calibrated proxy than the original proxy (which could be investigated from
first principles or empirical evidence). The following lemma shows that as long as our initial
proxy was positively correlated with B, the signs of these covariance terms will not change
using the re-calibrated proxy.

Lemma 3. Suppose that b is a (possibly mis-calibrated) estimate of the probability that
a taxpayer is Black based on some observable characteristics Z and b∗ is the re-calibrated
proxy which can be written as an orthogonal projection:

B = µ+ ρb+ ϕ,
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i.e.

b∗(b) = µ+ ρb.

Suppose further that Cov(B, b) > 0. Then

sign(E[Cov(Y,B|b)]) = sign(E[Cov(Y,B|b∗)])
sign(E[Cov(Y, b|B)]) = sign(E[Cov(Y, b∗|B)])

Proof. We note that

Cov(Y, b∗|B) = Cov(Y, µ+ ρb|B) = ρCov(Y, b|B)

and

Cov(Y,B|b∗) = Cov(Y,B|b).

Then the signs of E[Cov(Y,B|b)] and E[Cov(Y,B|b∗)] are identical, while the signs of
E[Cov(Y, b|B)] and E[Cov(Y, b∗|B)] will agree if ρ ≥ 0. Since ρ is the coefficient on b in said
regression, it is given by Cov(B, b)/Var(b), which is positive if and only if Cov(B, b) > 0.

The second difficulty is the term Cov(E[η∗|b∗],E[ε∗|b∗]), which will not in general be 0
and may not be obvious even in sign. This term can, however, be estimated; we do so below,
and observe that (at least in our context) it is exceedingly small.

Empirical Approach We now describe we apply the aforementioned strategy to
re-calibrate the BIFSG-predicted probability Black in the North Carolina dataset. We
consider North Carolina as a whole as well as EITC and non-EITC specific approaches.

First, we calculate ρ̂ as the coefficient from regressing an indicator for whether a taxpayer
self reports as Black on the BIFSG-predicted probability that a taxpayer is Black. That is,
we run the regression:

B = α0 + ρb+ ϕ,

with ρ̂ estimated once via ordinary least squares and separately via weighted least squares
using the North Carolina weights. We also repeat both estimations separately for EITC
taxpayers and non-EITC taxpayers. (The additional weighted/non-weighted and EITC/non-
EITC calculations will be repeated throughout; where required, weighted estimates will be
computed using the estimators described in B.4 above.) These estimates are reported in the
first line of Table B.1.

Next, we assign each individual

b∗i := α̂0 + ρ̂bi,
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and

ε∗i = Bi − b∗i ;

we then estimate Ĉov(b, ε∗) in the straightforward manner of using sample unweighted and
weighted averages and product of b and ε∗, again separating out by EITC status. These
estimates are reported in the second line of Table B.1.

The next four lines of Table B.1 are computed in a similar manner. That is, we compute
the covariance within a given realization of the conditioning variable (e.g. for the set of
non-Black taxpayers, B = 0) and then weight these estimates by the estimated share of
taxpayers they represent. Importantly, we discretize both b∗i and bi by rounding to the
nearest percentage point in order to create realizations to average over; this approach may
introduce some arbitrariness to the analysis, but avoids making parametric assumptions.

Next, we run the regression:

Y = α∗ + β∗b∗ + η∗

and interpret the estimated β̂∗; that is, β̂∗ is the linear estimator of disparity as applied to
the re-calibrated b∗. We then obtain

η̂∗i = Yi − α̂∗ − β̂∗b∗i .

We use this to compute the next line of Table B.1 in the following manner: first, we estimate
E[η∗|b∗] and E[ε∗|b∗] by computing the sample averages of η∗ and ε∗ within each discretized
b∗ category. We then assign each individual their respective sample averages based on their
value of b∗i , and then compute the overall covariance estimate over the population using these
features.

The next three lines of Table B.1 are computed straightforwardly - i.e. D̂ is based on the
ground truth,while D̂∗l and D̂∗p are computed according to the formulas in equations 2 and
3 above and the appropriate values from previously computed rows of Table B.1.

B.6 Gibbs Sampling

In addition to taxpayers’ first name, surname, and geographic location, the IRS has access
to additional information that may correlate to race. In principle, leveraging such
additional information could lead to better estimates of race probabilities and thus of
disparity. Additionally, it is possible that a finer breakdown of self-identified race and
ethnicity could contain additional information that may affect our disparity estimates.
Hence, as an additional robustness check, we leverage income (bucketed into 14 categories)
and marital status, abbreviated “MARS” (Single, Married Filling Jointly, or Other) to
obtain more accurate race/ethnicity estimates (at the more granular level of Hispanic,
non-Hispanic White, non-Hispanic Black, and Other).

To our knowledge, there are no readily available marginal distributions of race/Hispanic
probabilities conditional on income or marital status (and said distributions may differ
among taxpayers than the general population); hence, we use Gibbs sampling to obtain
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Table B.1: Estimates from the Re-calibration Exercise

Value Overall EITC Non-EITC
NC Reweighted NC NC Reweighted NC NC Reweighted NC
(1) (2) (3) (4) (5) (6)

ρ̂ 0.828 0.872 0.923 0.964 0.767 0.802

Ĉov(b, ε) -0.000 -0.000 -0.000 -0.000 0.000 -0.000

Ê[Cov(Y, b|B)] 0.000 0.000 0.001 0.001 0.000 -0.000

Ê[Cov(Y,B|b)] 0.001 0.001 0.001 0.001 0.000 0.000

Ê[Cov(Y, b∗|B)] 0.000 0.000 0.001 0.001 0.000 -0.000

Ê[Cov(Y,B|b∗)] 0.001 0.001 0.001 0.001 0.000 0.000

Ĉov(Ê[η∗|b∗], Ê[ε∗|b∗]) 0.000 0.000 -0.000 -0.000 0.000 0.000

D̂∗l 0.011 0.016 0.026 0.031 0.002 0.002

D̂ 0.008 0.012 0.018 0.024 0.002 0.002

D̂∗p 0.005 0.007 0.012 0.017 0.001 0.001
Notes: The table details the estimates for the disparities and covariance terms obtained from re-calibration,
for the North Carolina dataset (both unweighted (odd columns) and re-weighted (even columns). The
estimates are calculated for the overall population (columns 1 and 2), the EITC population (columns 3 and
4), and the non-EITC population (columns 5 and 6).

approximate probabilities from the IRS’ data and BIFSG. Gibbs sampling is a Bayesian
algorithm that reduces the problem of sampling from complicated joint distributions to
sampling from simpler marginal ones; in this section, we describe in detail this procedure
and how we apply it to our setting.

As a starting point, we take the conditional distribution of race and Hispanic origin
(RH) given first name, surname, and geography (F, S, and G, respectively, and,
collectively, FSG), implied by BIFSG to be correct. We model the joint distribution of
(RH,FSG,X), where X represents (income,MARS), as a decomposable model with
generating components {[RH,F ][RH,S][RH,G][RH,X]}. (In other words, we make a
similar naive Bayes assumption as in BIFSG, but treating X as a unit and allowing a more
general relationship between income and MARS.) Given this model, we can write the
conditional distribution of RH given (X,FSG) as

Pr(RH|X,FSG) = Multi

(
n,Cθ(i,j)

Pr(RH|G)

Pr(RH)

Pr(RH|F )

Pr(RH)

Pr(RH|S)

Pr(RH)

)
where θi,j is a vector of probabilities for the RH categories, given (X1 = i,X2 = j); that
is, θi,j = Pr(RH|X1 = i,X2 = j). Note also that Multi(n,p) represents the multinomial
distribution with n draws and class probabilities p, and C is a normalizing constant.

We estimate the parameters in the model with a Bayesian procedure, so we need a prior
on the unknown parameter θ(i,j). We set that to the Dirichlet prior with vector parameter
α0 = (1, . . . , 1), denoted θ(i,j) ∼ Dir(α0). This value for α0 was chosen to contribute a small
amount of information to the model while ensuring that the posterior is well-behaved. Denote
the unobserved vector of counts in the RH categories as ni,j for (X1 = i,X2 = j). Given the
form of the model, ni,j|X ∼ Multi(n,θi,j), the Dirichlet distribution was chosen because it
is the conjugate prior for the multinomial distribution and θ(i,j)|ni,j ∼ Dir(α0 + ni,j). Now
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we have the full conditional distributions for the unobserved variables in the model.

Pr (RH|X,F = f, S = s,G = g) = Multi

(
n,Cθ(i,j)

Pr(RH|g)

Pr(RH)

Pr(RH|f)

Pr(RH)

Pr(RH|s)
Pr(RH)

)
(4)

and

Pr
(
θ(i,j)|ni,j

)
= Dir(α0 + ni,j),

which make a Gibbs sampling algorithm available for estimation.
An outline of the Gibbs Sampling algorithm used here is provided below. Note the

superscript (b) indexes the iteration number; it is not an exponent.

• Initialization

– For each record, indexed by m, generate RH
(0)
m from

Pr(RHm|fm, sm, gm) ∼
(

1, C
Pr(RH|gm)

Pr(RH)

Pr(RH|fm)

Pr(RH)

Pr(RH|sm)

Pr(RH)

)
where again Multi(n,p) represents the multinomial distribution with size n and
probability p and C is a normalizing constant.

– Tabulate n
(0)
i,j =

∑
Xm=(i,j) RH

(0)
m

• Main Loop

– for b = 1, ..., B + b0:

∗ generate θ
(b)
i,j ∼ Dir

(
1,α0 + n

(b−1)
i,j

)
for each i, j

∗ generate RH
(b)
m as

RH(b)
m ∼ Multi

(
1, Cθ(i,j)

(b)
m

Pr(RH|gm)

Pr(RH)

Pr(RH|fm)

Pr(RH)

Pr(RH|sm)

Pr(RH)

)
∗ tabulate n

(b)
i,j =

∑
Xm=(i,j) RH

(b)
m

This generates a sequence of values (θ
(b)
i,j , b = 1, ..., B + b0). Here, b0 is called the burn-in

time. If the initial values, where b = 0, are far from the center of the posterior distribution,
it may take several iterations for the sequence to move toward the mode of the posterior. It
can be shown that, after a long enough burn-in time b0, the set {θ(b)

i,j , b = 1, ...B+ b0} will be
a sample from the target distribution, that is, the posterior distribution of θi,j, conditioned
on the data. (Technical conditions for this are given in e.g. Geman and Geman (1984).)
Then if B is large,

E(θi,j|Data) ≈ 1

B

B+b0∑
b0

θ
(b)
i,j
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The new probabilities for RH are calculated for each record using Equation 4 above. For
more details on the Gibbs sampling technique, see e.g. Casella and George (1992).

Using these probabilities, we re-compute the linear and probabilistic estimators in the
same manner as described before; the results are given in Column (2) of Table A.7. These
estimates are similar to those calculated with vanilla and re-calibrated BIFSG. Note that
in practice, the algorithm described can be computationally expensive; we thus perform the
entire procedure on a 1% sample of the population.

B.7 Estimating audit disparity conditional on true underreporting

In Section 6.2 we describe at a high level how we can combine operational audit data, NRP
data, and baseline taxpayer data to estimate the audit rate of taxpayers conditional on a
given (binned) amount of underreporting. Here, we provide additional detail. Note that the
audit rate of taxpayers of group g and underreporting k is simply Pr[Y = 1|B = g,K = k].
By Bayes’ rule:

Pr[Y = 1|B = g,K = k] =
Pr[K = k|Y = 1, B = g] Pr[Y = 1|B = g]

Pr[K = k|B = g]
.

Each of the quantities on the right-hand side of the equation includes self-reported race as
a conditioning variable. Since we do not have access to self-reported race, we must use our
predicted race probability, like in our estimates, to measure these quantities.

We consider each quantity in turn. Consider first Pr[K = k|B = 1], i.e. the probability
that a taxpayer has non-compliance K given that they are Black. In practice, we bin
taxpayers’ underreporting amounts rather than viewing them as exact figures (as exact
repeated amounts of underreporting are rare). Viewing K = k as membership in the set
of taxpayers whose underreporting is in bin k, we can thus apply either the probabilistic or
linear disparity estimator to obtain this quantity:

P̂r
p
[K = k

∣∣B = 1] :=

∑
i∈NRP bi · 1[Ki = k]∑

i∈NRP bi

P̂r
p
[K = k

∣∣B = 0] :=

∑
i∈NRP(1− bi) · 1[Ki = k]∑

i∈NRP(1− bi)
,

where we limit our summation to NRP to ensure that our estimates are representative of
the overall population, or the linear estimator, by regressing:

1[Ki = k] = αk + βk · bi + ξi

and taking:

P̂r
`
[K = k

∣∣B = 1] := α̂k + β̂k

P̂r
`
[K = k

∣∣B = 0] := α̂k,
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where again the regression is run over EITC claimants in NRP. (As before, we can modify
our estimators to take into account sample weights accordingly.)

Next, consider Pr[K = k|Y = 1, B = g]. This quantity is just as Pr[K = k|B = g], but
limited to taxpayers who were audited; thus, we can again apply the probabilistic and linear
estimators, but run them over the operational audit data rather than NRP.

Finally, Pr[Y = 1|B = g] is simply the overall audit probability conditional on race,
which is the main focus of the paper.

Combining the weighted estimators together, we can write:

P̂r
p
[Y = 1|K = k,B = 1] :=

∑
i∈NRP bi·1[Ki=k]∑

i∈NRP bi
·
∑

i biYi∑
i bi∑

i∈OP bi·1[Ki=k]∑
i∈OP bi

and similarly for conditioning on B = 0. We can similarly combine the linear disparity
estimates.

Because we have combined the estimators together, Proposition 1 does not directly apply.
Additionally, estimates are not independent across different underreporting amounts. These
factors make the behavior of this estimator more difficult to analyze. Thus, in order to obtain
confidence intervals we do not attempt to characterize the standard errors analytically, but
instead use the bootstrap. That is, we draw 100 re-samplings (of each dataset) without
replacement, and re-compute the estimates for each subsample. We then take the mean of
these estimates for each bin k to be our estimated audit rates, and add/subtract 1.96 times
standard error to obtain the confidence intervals. We note that, while we do not have a formal
statement about the direction of bias these combined estimators may have and whether
the ground truth need lie between the combined probabilistic and linear estimators, the
probabilistic estimator tends to produce smaller estimates of within-bin audit rate disparities
than the linear estimator does, at least for the bulk of the distribution.
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C North Carolina Match and Bias Correction

C.1 North Carolina Match

In our North Carolina voter registration data, we observe individuals’ first names, last names,
zip codes, residential street addresses, and mailing addresses at time of registration or filing.
We match these data to IRS data using these common features according to the following
procedure:

1. First, look for exact match on zip code, first name, last name, and full text of residential
street address. Remove matched records from both datasets and append matched
records to output file.

2. Among unmatched records, look for match on zip code, first four characters of first
and last name, and full text of residential street address (after minor data cleaning).

3. Among unmatched records, look for match on zip code, first character of first name,
first four characters of last name, and full text of residential street address.

4. Among unmatched records, look for match on zip code, first four characters of first
and last name, residential street number, and city.

5. Among unmatched records, look for match on zip code, first character of first name,
first four characters of last name, and full text of mailing address.

Using this procedure, we are able to match 2.5 million taxpayer and voter records, or
approximately 47% of the population of North Carolina taxpayers for Tax Year 2014.

C.2 North Carolina Reweighting

When specified, we use inverse-probability weighting to align the composition of the North
Carolina matched sample with that of the full population of tax returns for 2014. The
weights are generated from a linear probability model whose binary outcome equals one
for records appearing in the IRS-matched North Carolina sample, and whose features are
chosen to reflect observable taxpayer characteristics that we would like to align with their US
means. These are entered as categorical variables and are fully interacted with one another,
resulting in a flexible nonparametric model of the conditional probability of appearing in
the North Carolina data. Features include quintiles (as calculated on the full population)
of the BIFSG-predicted probability that a taxpayer self reports as black; four activity code
groupings31; gender; the presence of dependents; joint/non-joint filing status; and whether
a taxpayer was audited. The weights are then given by the inverse of these conditional
probabilities. The weights were successful in aligning the weighted sample proportions along
all included dimensions to within 0.02% of their U.S. population means.

31Activity codes are grouped as: 270-271 (EITC claimants), 272 (1040 filers without additional schedules
or very high income), 273-278 (filers with Schedule C etc. but not very high income), and 279-281 (filers
with very high ($1M) or more income or high ($ > 250K) with additional schedules).
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D Disparity Decomposition

This appendix shows how to decompose the overall disparity in audit rates with respect to
the contribution from EITC audits.

D.1 Notation

As above, let Y ∈ {0, 1} denote whether a taxpayer is audited and b ∈ {B,NB} denote
whether a taxpayer is Black. YB is the average audit rate among Black taxpayers and
YNB is the average audit rate among non-Black taxpayers. D = YB − YNB denotes the
difference in average audit rates across Black and non-Black taxpayers. Let DC

B = Y C
B −Y C

NB

denote the difference in Black versus non-Black audit rates among EITC claimants and
DNC

B = Y NC
B − Y NC

NB denote the difference in Black versus non-Black audit rates among
EITC non-claimants. Finally, let Cb denote the probability a taxpayer of race b claims the
EITC, for b ∈ {B,NB}.

D.2 Decomposition

By the law of iterated expectations,

YB = Y C
B CB + Y NC

B (1− CB) (5)

and similarly,

YNB = Y C
NB CNB + Y NC

NB (1− CNB) (6)

Substituting (11) and (12) into the definition of D, we can write

D = Y C
B CB + Y NC

B (1− CB) − Y C
NB CNB − Y NC

NB (1− CNB) (7)

Focusing on the first and third terms in (13), we can write:

Y C
B CB − Y C

NB CNB

= Y C
B CB − Y C

NB CB + Y C
NB CB − Y C

NB CNB

= DC CB + Y C
NB (CB − CNB) (8)

Similarly, focusing on the second and fourth terms in (13), we can write:

Y NC
B (1− CB)− Y NC

NB (1− CNB)

= Y NC
B (1− CB)− Y NC

NB (1− CB) + Y NC
NB (1− CB)− Y NC

NB (1− CNB)

= DNC (1− CB)− Y NC
NB (CB − CNB) (9)

Substituting (14) and (9) into (13) yields

D = DC CB +DNC (1− CB) + (CB − CNB)
(
Y C
NB − Y NC

NB

)
(10)
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Equation 10 expresses the overall difference in the audit rate among Black and non-Black
taxpayers in terms of three components. The first term reflects the difference in audit rates
between Black and non-Black EITC claimants. The second term reflects the difference in
audit rates between Black and non-Black taxpayers not claiming the EITC. The third term
reflects differences in the rate at which Black and non-Black taxpayers claim the EITC and
the extent to which EITC returns are audited at a different rate than non-EITC returns
among taxpayers of the same race.

D.3 Empirical Implementation

Using the weighted estimator described in section 3, we estimate DC = 1.96%, DNC = 0.10%,
CB = 32.23%, and CNB = 17.14%. We also estimate that EITC returns are audited at a
higher rate than non-EITC returns among non-Black taxpayers, Y C

NB − Y NC
NB = 1.05% −

0.31% = 0.74%. Following this approach, we estimate that the audit rate disparity within
EITC returns (term 1) contributes 78% of the observed disparity, with the remainder due to
the disproportionate auditing of EITC returns (term 3, 14% of the overall disparity) and, to
a lesser extent, the disparity within non-EITC returns (term 2, 8% of the overall disparity).
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E Decomposition of Classifier-Induced Disparity

This appendix shows how to decompose the overall disparity in audit rates that is induced
by the classifier, as discussed in the main text.

E.1 Notation

As above, let Y ∈ {0, 1} denote whether a taxpayer is audited and b ∈ {B,NB} denote
whether a taxpayer is Black. YB is the audit rate among Black taxpayers and YNB is the
audit rate among non-Black taxpayers. DB = YB − YNB denotes the difference in average
audit rates across Black and non-Black taxpayers. Let fb denote the share of compliant
taxpayers in group b who are audited, which is a false-positive rate. Let sb denote the
sensitivity, or recall, of the audit selection process, or the share of non-compliant taxpayers
from group b who are selected at a given audit budget. Finally, let cb denote the probability
a taxpayer of race b is compliant, defined as under-reported tax liabilities of less than $100.

E.2 Decomposition

The audit rate for each group is the weighted sum of the rates at which its compliant and
non-compliant taxpayers are audited:

YB = fB cB + sB (1− cB) (11)

YNB = fNB cNB + sNB (1− cNB) (12)

Subtracting the two gives:

D = YB − YNB = fB cB − fNB cNB + sB (1− cB)− sNB (1− cNB) (13)

This expression can be rewritten by adding and subtracting the cross-terms cBfNB and
cBsNB and rearranging, which gives:

D = cB (fB − fNB) + (1− cB) (sB − sNB) + (cNB − cB)(sNB − fNB) (14)

Equation 14 expresses the overall difference in the audit rate between Black and
non-Black taxpayers in terms of three components. The first term reflects that part of
exam-rate disparity that is proportional to the group difference in audit rates for compliant
taxpayers. The second term reflects the part that is proportional to the group difference in
audit rates for non-compliant taxpayers. The third term is proportional to the difference
between compliance rates for Black and non-Black claimants. The latter is scaled by the
difference between the sensitivity and the false positive rate for the reference group, which
will be larger for more accurate models. Note that either group can serve as the reference
group; results were qualitatively similar when the reference group was switched.
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Table E.1: Unconstrained Classifier Disparity Decomposition

Black Non-Black Contribution to Disparity (percentage points)

False-positive Rate 0.0015 0.0017 -0.0076
Sensitivity 0.0367 0.0231 0.8431
Share Compliant 0.3823 0.5060 0.2651
Observed Disparity 1.1006

Notes: The table decomposes the overall disparity induced by the unconstrained random forest classifier
into three sub-components: The share accounted for by differences in underlying rates of compliance, the
share accounted for by differences in the sensitivity of the model to noncompliance within each group, and
the share accounted by differences in the rate of false positives across groups. “Compliant” taxpayers are
those whose overall audit adjustments do not exceed $100. Sensitivity refers to the share of non-compliant
taxpayers selected for audit. False positive rate refers to the share of compliant taxpayers selected for audit.
Contribution to Disparity refers to the term from Equation 14 corresponding to the specified row. All
values are computed at the status-quo EITC audit rate of 1.45%. Values in the last column of the table are
represented in percentage points.

E.3 Empirical Implementation

Table E.2: Constrained Classifier Disparity Decomposition

Black Non-Black Contribution to Disparity (percentage points)

False-positive Rate 0.0036 0.0011 0.0958
Sensitivity 0.0444 0.0208 1.4563
Share Compliant 0.3823 0.5060 0.2429
Observed Disparity 1.7950

Notes: The table decomposes the overall disparity induced by the constrained random forest classifier into
three sub-components: The share accounted for by differences in underlying rates of compliance, the share
accounted for by differences in the sensitivity of the model to noncompliance within each group, and the
share accounted by differences in the rate of false positives across groups. “Compliant” taxpayers are
those whose overall audit adjustments do not exceed $100. Sensitivity refers to the share of non-compliant
taxpayers selected for audit. False positive rate refers to the share of compliant taxpayers selected for audit.
Contribution to Disparity refers to the term from Equation 14 corresponding to the specified row. All
values are computed at the status-quo EITC audit rate of 1.45%. Values in the last column of the table are
represented in percentage points.
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Figure E.1: Data Flow for Random Forest Models

F Taxpayer Non-compliance Model

The outcomes of interest Y of the taxpayer non-compliance random forest models are the
dollar amount of adjustment following an audit (for the regression model) and a [0,1] indicator
of whether non-compliance exceeds $100 (for the classifier model). The inputs to the model
are characteristics of the tax return, denoted X, which include wages and other sources of
income, claimed deductions, and flags for whether dependents claimed on the return may
violate IRS dependent rules. These features do not include race, gender, age, location, or
other demographic variables.

To train and evaluate the models, we first subset the NRP data from tax years 2010-14 to
taxpayers claiming the EITC. We then randomly divide the data into 5 folds. We designate
4 of these folds as the training set, and the remaining fold as the test set. We tune the
hyperparameters of each model, including the total number of decision trees in each forest,
the maximum depth of each decision tree, and the maximum number of features available
to each decision tree, using 5-fold cross validation within the training set and random grid
search over the space of hyperparameters we consider. We then fit each tuned model on
the full set of training data to generate a function Ŷ = m(X) which maps features into
predictions, and we apply this model to the test set. We repeat this process 5 times, until
each observation in the NRP data has a predicted label. The train-test splits are the same
for both the regression and classification models. Figure E.1 provides an exposition of the
data flow and model training process.

To obtain estimates of disparity and annualized adjustments at each audit rate, we first
bootstrap from the population of labeled test data, and then sort observations within the
bootstrapped sample by either the magnitude of their predicted noncompliance (for the
regression model) or the predicted likelihood of noncompliance above a $100 threshold (for
the classification model). Within each sample, annualized adjustments are given by:
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Rs =
1

5

2014∑
t=2010

Wt∑nst

i=1wist

nft∑
i=1

(aistwistrist) (15)

The rightmost sum computes the total weighted audit adjustments across observations in
sample s from tax year t, where aist indicates whether individual i in sample s and tax year
t was audited and (wistrist) is the weighted adjustment from the audit in 2014 dollars. The
term to the left of this sum takes the total sample weights from NRP observations in year t
(denoted Wt) over the total sample weight from this year included in sample s, to account
for the fact that each fold only contains a portion of the total population available in each
study year. We then sum across each of the 5 study years and divide by 5 to approximate one
year of annual adjustments in 2014 dollars. Disparity measures are computed within each
sample using both the linear and probabilistic estimators described in Section 3, adjusted to
account for NRP sample weights. We take the mean and standard error of these measures
across the bootstrapped samples to construct our trajectories and 95% confidence intervals.

Oracle adjustments and disparity calculations are analogous to the random forest
calculations, with the exception that the data are sorted using true underlying
noncompliance, rather than predicted amount or likelihood of noncompliance.
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