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Chairman Foster, Ranking Member Hill, and members of the task force, thank you for the 
opportunity to appear before you to discuss the use of artificial intelligence in financial services.  

My name is Douglas Merrill. I’m the CEO of ZestFinance, which I founded ten years ago with the 
mission to make fair and transparent credit available to everyone. Lenders use our software to 
increase loan approval rates, lower defaults, and make their lending fairer. Before ZestFinance, I 
was Chief Information Officer at Google. I have a Ph.D. in Artificial Intelligence from Princeton 
University. 

The use of artificial intelligence in the financial industry is growing in areas like credit 
decisioning, marketing, and fraud detection. Today I will discuss a type of AI — machine 
learning (a.k.a ML) — that discovers relationships between many variables in a dataset to make 
better predictions. Because ML-powered credit scores substantially outperform traditional 
credit scores, companies will increasingly use machine learning to make more accurate 
decisions. For example, customers using our ML underwriting tools to predict creditworthiness 
have seen a 10% approval rate increase for credit card applications, a 15% approval rate increase 
for auto loans, and a 51% increase in approval rates for personal loans — each with no increase 
in defaults. 

Overall, this is good news and it should be encouraged. Machine learning increases access to 
credit especially for low-income and minority borrowers. Regulators understand these benefits 
and, in our experience, want to facilitate, not hinder, the use of ML.  

At the same time, ML can raise serious risks for institutions and consumers. ML models are 
opaque and inherently biased. Thus, lenders put themselves, consumers, and the safety and 
soundness of our financial system at risk if they do not appropriately validate and monitor ML 
models.  

Getting this mix right—enjoying ML’s benefits while employing responsible safeguards—is very 
difficult.  Specifically, ML models have a “black box” problem; lenders know only that an ML 
algorithm made a decision, not why it made a decision. 

Without understanding why a model made a decision, bad outcomes will occur. For example, a 
used-car lender we work with had two seemingly benign signals in their model. One signal was 
that higher mileage cars tend to yield higher risk loans.  Another was that borrowers from a 
particular state were slightly less risky than those from other states. Neither of these signals 
raises redlining or other compliance concerns. However, our ML tools noted that, taken 
together, these signals predicted a borrower to be African-American and more likely to be 
denied. Without visibility into how seemingly fair signals interact in a model to hide bias, 
lenders will make decisions which tend to adversely affect minority borrowers. 
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There are purported to be a variety of methods for understanding how ML models make 
decisions. Most don’t actually work. As explained in our White Paper and recent essay on a 
technique called SHAP, both of which I’ve submitted for the record, many explainability 
techniques are inconsistent, inaccurate, computationally expensive, or fail to spot 
discriminatory outcomes. At ZestFinance, we’ve developed explainability methods that render 
ML models truly transparent. As a result, we can assess disparities in outcomes and create less-
discriminatory models. This means we can identify approval rate gaps in protected classes such 
as race, national origin and gender and then minimize or eliminate those gaps. In this way, 
ZestFinance’s tools decrease disparate impacts across protected groups and ensure that the use 
of machine learning-based underwriting mitigates, rather than exacerbates, bias in lending. 

Congress could regulate the entirety of ML in finance to avoid bad outcomes, but it need not do 
so. Regulators have the authority necessary to balance the risks and benefits of ML 
underwriting. In 2011, the Federal Reserve, OCC, and FDIC published guidance on effective 
model risk management.1 ML was not commonly in use in 2011, so the guidance does not 
directly address best practices in ML model development, validation and monitoring.  We 
recently produced a short FAQ, which we’ve also submitted for the record, that suggests updates 
to bring the guidance into the ML era.  Congress should encourage regulators to set high 
standards for ML model development, validation and monitoring. 

We stand upon the brink of a new age of credit. An age that is fairer and more inclusive, enabled 
by new technology — machine learning.  However, “brink” can also imply the edge of a cliff; 
without rigorous standards for understanding why models work, ML will surely drive us over the 
edge. Every day that we wait to responsibly implement ML keeps tens of millions of Americans 
out of the credit market or poorly treated by it.  Thank you for your time and attention. 

 

                                                        
1 https://www.occ.treas.gov/news-issuances/bulletins/2011/bulletin-2011-12a.pdf 
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significantly less expensive. ZestFinance’s team of data scientists and mathematicians are 
united by a unique mission: to make fair and transparent credit available to everyone. 
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2 Introduction 

Machine learning (ML) is a subset of artificial intelligence that focuses on the design of systems 
that can learn from and make decisions and predictions based on large information sets. It has 
become the standard for producing powerful data models that automate decision-making, often 
in high-stakes use cases. Its effectiveness has been proven in diverse fields such as natural 
language processing, robotics, recommendation engines, finance, and healthcare. The research 
community continues to substantiate the superior predictive power of these new algorithms over 
traditional methods such as logistic regression. Unlike status quo methods, ML models 
accommodate non-linearities, multivariate interactions, and generalize well to new datasets all 
within a single model -- improving accuracy and reducing complexity and risk. 
 
Despite the clear benefits of machine learning, the use of logistic regression models continue to 
be the norm, especially in risk- and prediction-related business such as credit and underwriting. 
There are several reasons for this. One is that financial institutions (FIs) do not have the 
in-house expertise required to build, train, and deploy advanced ML models. More user-friendly 
ML modeling tools will help close this knowledge gap. The more imposing obstacle to adoption 
is regulatory and business risk. The Federal Reserve, the Office of the Comptroller of the 
Currency, and the Federal Deposit Insurance Corporation have all issued guidance dictating 
clear and documented model risk management: how and why a model that an FI has put into 
production arrives at the results. Explainable machine learning models should be the standard 
for FIs not only to meet regulatory requirements but also to illustrate their decision-making 
process to clients and business stakeholders.  
 
In this paper, we define explainability in terms of the problems it solves, the principles on which 
it is based, and the way in which it conveys information about the model. We present an 
overview of methods in use in the market, along with techniques for evaluating the quality of 
explanations each technique delivers. Popular explainability methods have systematic 
shortcomings: they are often computationally expensive, restricted to certain classes of models, 
and they suffer from failure modes, which could lead to catastrophic outcomes such as 
race-based discrimination. Solving these issues is the focus of a considerable research effort, 
with the goal of efficiently explaining expressive models such that the explanations provide an 
accurate picture of the model’s behavior in a human-interpretable form. Enabling the safe 
application of modern machine learning techniques is the key to revolutionizing high-stakes 
business problems like credit underwriting. 

3 What is explainability? 

To explain a model is to relate the model’s decisions to the input data on which its decisions are 
based. This is a notably vague definition compared to the performance goal of machine 
learning, which is to make highly accurate predictions in a range of high-stakes applications, 

Copyright ©2018 ZestFinance, Inc. All Rights Reserved. Confidential and proprietary. No part of 
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such as consumer finance and healthcare. While a useful optimization criterion for modeling 
might be classification error, the success of explaining a model is a more qualitative outcome. 
What does it mean for a model to be properly explained? To approach the difficult task of 
explaining machine learning models, the problem setting must be well-established. Which type 
of model is to be explained? What form does the information provided by the explanation take? 
What are the desired outcomes for interpreting this model? These questions dictate the 
principles of a satisfactory explainability approach. 

3.1 Conveying explanations  

The typical end-product of an explainability tool reveals the contributions or influence of each 
input feature towards the model prediction. In the context of machine learning, features are 
individual input columns. This feature-level explanation is considered local if it applies to a 
single input sample or global if it describes feature contributions over all samples. A different 
approach is to use example data points. Exemplar-level approaches explain a prediction in 
terms of the training input which led to that prediction. Thus, explanations can exist at the level 
of features, individual samples, or the model as a whole.  
 
For example, in an autonomous vehicle, explaining the decision to turn involves generating a 
heat map over the input image revealing which features in the image led to that decision. An 
English to Spanish translation model can be explained by highlighting which English words led 
to each Spanish word in the translation. For credit underwriting, the decision to reject a loan 
applicant is explained by highlighting the fields in the loan application which led to the rejection 
decision. This may also include the features with the most important contributions, both positive 
and negative, to the applicant’s score. 
 
The interpretation of model behavior at a particular input is often less meaningful than 
explaining behavior at the input relative to a point of reference. This referential form of 
explainability is more intuitive for certain application domains. In credit underwriting, returning 
the reasons for a rejection are more informative in the context of an accepted applicant. The 
customer and regulators are less interested in the explanation of the model’s exact probability 
output than the explanation of why the applicant was rejected compared to an accepted 
reference applicant. 

3.2 Interpreting a model 

Explanations reveal how a model uses its inputs to make predictions. With feature-level 
explanations, this is a breakdown of each feature’s contribution to the output. However, it is only 
in the case of linear models that the feature contributions are exactly the linear model 
coefficients for each feature. For nonlinear models, the explanation does not convey information 
as transparently. It is therefore important to assure that the explanation of a complex model can 
be trusted to depict model behavior accurately.  
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There are a few defining properties of a reliable explanation, which aid in the development and 
evaluation of explainability techniques: 
 
Consistency. ​​A consistent explainer should not rely on meticulously tuned parameters and 
should provide reasonable results for a wide range of parameters. It should not be prone to 
large random fluctuations between repeated runs of the program. Logically equivalent models 
should yield the same explanations. Similar inputs should receive similar explanations.  
 
Accuracy ​​. An explainer should be fully representative of the true dynamics and behavior of the 
model. The problem of interpreting complex machine learning often leads to some simplifying 
assumptions. For example, the proxy model explanation technique assumes that a simple, 
interpretable model can serve as a proxy to explain a more complicated model, as long as their 
input-output behavior is similar enough. The proxy model assumption is reasonable only if a 
high-level interpretation of the model is needed, such as the feature importance across all 
inputs. For explaining individuals, the proxy is going to produce very different results from the 
target model. Other assumptions such as monotonicity and independence of the input variables 
cannot be guaranteed and result in explanations which do not reflect reality.  
 
One tangible target for the accuracy of an explanation is the sensitivity of a model, which refers 
to how a model’s output is affected by a small perturbation to its input. Variables which are 
declared to be important by an explanation should have a significant impact on the model’s 
output when perturbed.  
 
Interpretability ​​. Explanation values are not normalized quantities such as with probabilities, 
and amplitudes of explanations may vary greatly between methods. If the desired end product 
of an explanation is the relative feature importance, then this is not an issue, but providing 
values in interpretable units is preferable. Some explainers provide an attribution to the features 
which sums to the model’s output. Thus, the explanation can be directly interpreted as each 
feature’s contribution to the output. Explanations are harder to interpret in isolation, so some 
techniques are referential. This means that they explain the prediction for a particular input in 
reference to the model’s treatment to a baseline input. For many problems a referential 
explanation is natural. For example, in credit underwriting, the decision to deny an applicant 
credit may be explained relative to a reference-approved applicant. 
 

Copyright ©2018 ZestFinance, Inc. All Rights Reserved. Confidential and proprietary. No part of 
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Figure 1: A credit model’s prediction of 0.44 decomposed into contributions from the input 
features. 
 

Practicality ​​. Explainability techniques can be quite computationally expensive. Explainers must 
scale well with the complexity of the model and the size of the dataset if they are to offer 
real-time explanations. An important consideration is the types of models which a technique is 
capable of explaining. Black-box methods can explain any model, while others focus on trees or 
neural networks. Ensembles of models offer robustness and improved performance, yet 
interpreting heterogenous submodels poses a difficult task for explainability.  

4 Importance of explainability 

The predictive ability of a machine learning model is only one component of a complete 
explanation. Predictions optimize a particular objective function, such as mean squared error, 
but this is an incomplete picture of the overall success of the model. A complete explanation 
needs to address numerous regulatory concerns that the standard model validation process 
takes for granted, as it was developed for more easily interpretable logistic regression-based 
models. In order to put machine learning models into production for everyday use, their 
explainability methods have to meet the following regulatory model validation requirements 
[Doshi-Velez and Kim, 2017]: 
 

- Fairness:​​ It is necessary to identify unlawful or inappropriate model biases. For 
example, some features may be a proxy for race or gender. A model should not be 
overly reliant on these features, and not treat individuals from protected classes 
differently than those from an unprotected class with comparable inputs. 

- Safety:​​ Identify failure modes which may be extrapolated from the features the model 
uses in making its decision. Such failure modes may not be obvious in summary 
statistics derived from validation sets. The model may be getting good results from 
obviously flawed logic or poor results due to unobvious changes in input data. Consider 
the stopping decisions an autonomous vehicle makes for pedestrians. It is important to 
interpret the model’s decisions to ensure that the pedestrian is the driving force of the 
stop, and not just the presence of signs or crosswalks. Otherwise, the model may not 
respond to pedestrians in unprotected crossing situations. 
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- Objective misalignment:​​ Although the model’s objective function may be a proxy for a 
business objective, the model must be analyzed to ensure it is adequately addressing its 
intended purpose. For example, optimizing a diet to lower cholesterol may not produce a 
healthy diet if the dieter chooses nonfat, but high sugar foods. 

- Security:​​ A model that is not well-understood could be exploitable by attackers. The 
model can be manipulated if easily modifiable features can change the outcome. 
Confirming that the model does not rely on such “gameable” features helps ensure its 
security. 

- Model health monitoring:​​ In production, the model’s performance could degrade 
considerably if the characteristics of the population diverge from the training set. It may 
be difficult to acquire ground truth target values for more recent examples to detect such 
a change. Additionally, in more critical applications, monitoring may need to be real-time. 
Using explainability to monitor model health ensures that the functionality of the model is 
the same as it was during training. This is a more direct test for the model’s health than 
detecting shifts in the input data alone, with no regard to the model. 

4.1 Stakeholders 

Explainability impacts many parties, and understanding how these impacts play out is an 
important step in designing machine learning products.  
 

- Regulators ​​ have laid out model risk management criteria. While regulatory guidance 
was based on old techniques, that guidance still applies to ML models in production. 
Unfortunately, you cannot meet regulatory requirements for ML models without 
explainability. In the European Union, for instance, the General Data Protection 
Regulation (GDPR), as of 2018, grants a “right to explanation” for users subject to 
automated or AI-based decision-making. In the U.S., state regulators are also moving in 
the direction of demanding greater explainability, and federal regulators are actively 
reviewing the use of alternative data and advanced mathematical techniques in 
automated decision-making.  

- Consumers ​​ also benefit from receiving explanations of decisions that can have a 
profound impact on their lives. Automated decisions can be troubling, and clear 
explanations of how an automated process arrived at a decision can provide confidence 
that they were treated fairly, and offer a path of correct behavior towards a different 
outcome. At ZestFinance, our goal is to expand the availability of fair and transparent 
credit, which requires providing consumers with interpretable decisions. 

- Management​​ must assess the business impacts and the risks associated with deploying 
machine learning models. Explaining models puts algorithmic decisions in a context that 
is consistent with the business logic of human decision makers. Explainability tools may 
themselves be an important product offering alongside machine learning models. 
Business leadership has more options for what to include in a complete machine 
learning product. 
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- Data scientists ​​ must consider explainability in their modeling decisions. This is an 
emerging field, with an ever-evolving set of techniques and empirical results. Research 
and development efforts may need to focus more on explainability than the actual 
modeling itself. Developments in explainability enable data scientists to build more 
powerful models and provide a valuable tool for debugging and validation. 

4.2 Explainability in credit 

In consumer credit underwriting, explainability is just as important as the model itself. The need 
for explainability is explicit for credit underwriting systems, as specified by the Equal Credit 
Opportunity Act (ECOA) Regulation B and Fair Credit Reporting Act (FCRA). These regulations 
require that lenders supply ​adverse action ​ notices, which inform the applicant of the reasons for 
the denial of credit. The law establishes the basis on which applicants cannot be denied credit. 
For example, discrimination is prohibited on the basis of ​race, sex, age, national origin, or marital 
status​, i.e., the ​disparate impact​ of particular classes. 
 
The legal requirement of interpretability has led the industry to be dominated by simple, 
inexpressive models such as logistic regression. Expanding credit to more good borrowers 
(without added risk) can only happen with the wider adoption of machine learning. This can only 
happen by applying novel explainability techniques. In the following sections, we describe the 
current explainability methods and their performance ability, followed by a comparison to Zest’s 
explainability method and performance. 

5 Explainability techniques 

Methods for explainability can be categorized based on the type of model they explain and the 
criteria which these explanations seek to satisfy. The explanation can also convey information in 
different forms, as described earlier. 
 
Black-box explainability techniques derive explanations solely from input-output behavior, 
without considering the model internals. Black-box techniques have the benefit of versatility and 
apply to any class of model. The tradeoff for this versatility is the difficulty in accurately 
characterizing model behavior without utilizing any specific information from the model. 
Black-box techniques are also often computationally expensive, which roughly stems from the 
need to enumerate many test cases in an attempt to fully explain the decision space. White-box 
techniques exploit the structure of the model in interpreting its decisions. While white-box 
techniques have more information available to produce explanations, this comes at the expense 
of losing the flexibility of black-box methods. 
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5.1 Intrinsic explainability 

Two model types are considered to be inherently explainable: linear models and decision trees. 
For this reason, they have been workhorses in regulated industries. A linear model makes 
predictions of the form 
 
 (x) x x .. xf = a1 1 + a2 2 + . + an n + ε  
 
Where  is the ith feature on the input,  is the corresponding coefficient (weight), and  isxi ai ε  
the bias term. Explaining a linear model is simple because the contributions of each feature are 
by definition additive. Each feature contributes its value weighted by the coefficient associated 
with it, i.e. . The coefficients of the linear model serve as measures of feature importance,xai i  
and these do not change across all inputs. Thus, local and global explainability are the same for 
linear models. For classification problems, with a discrete number of classes, modelers use a 
logistic regression model that takes the form:  
 
 (x) x x .. x )f = σ(a1 1 + a2 2 + . + an n + ε  
 
In logistic regression, the linear model is transformed by the nonlinear logistic function, which 
scales the output to behave like a class probability. Since this function is monotonic, logistic 
regression models can be explained by their underlying linear model. 
 
Decision trees arrive at classification decisions by following decision paths determined by 
querying individual features. Each node in a decision tree is associated with a test that a certain 
feature is above a given threshold, with the result of this test determining the next node. Leaf 
nodes in the decision tree represent decisions. 
  
Predictions made by a decision tree are the result of very explicitly stated conditions on a 
handful of features. Explaining a decision tree is as simple as returning the decision path. This 
is a local explanation, but a global summary of model behavior can be derived from measures of 
the frequency with which each feature is used in the decisions. 
 
Other simple classifiers may be considered explainable. The k-nearest neighbor's classifier 
assigns inputs to the class of the nearest input in the training set, and thus inherently offers 
exemplar-level explanations. The naive Bayes classifier uses the independence assumption to 
represent the class posterior probability as the product of likelihoods for each feature. The 
feature likelihoods represent the relative importance of each feature towards the model’s 
prediction. 
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5.2 The challenge of explainability 

While simple models offer out-of-the-box explainability, unlocking more powerful models 
requires advanced explainability methods. The most expressive models with the greatest 
potential performance gains provide no innate interpretability. The classifiers discussed above 
do not scale to high dimensional data such as images, making them unusable for many 
real-world problems. Ensembled models offer robustness, but explaining them carries the added 
difficulty of ensuring that the submodel explanations are compatible. The relative ordering of 
feature-level explanations may be the only meaningful information that can be extracted, which 
prohibits the comparison of explanations between models.  

5.3 Univariate perturbations 

Explainability of a black box model requires understanding how the model responds to its 
inputs. Consider the task of local explainability. A natural approach is to perturb a given input 
and observe the effect on the output. If the model is highly sensitive to the perturbation, then the 
features involved were important to the prediction. Fully characterizing the model may require 
testing any possible perturbation, which is computationally intractable and cannot return a 
concise explanation of the model function. The most common procedure is to observe the effect 
that a single feature has on the model output, and use this a measure of that feature’s 
importance. 
 
One type of perturbation is to remove a feature entirely, which is the basis for 
Leave-one-covariate-out (LOCO) [Lei et al. 2018] feature importance. The impact of removing 
feature  is , where  is the original input and  is the input without feature .xi (x) f (x )f −  −i x x−i i  
Another approach is to add noise to a feature rather than removing it entirely. Permutation 
feature importance (PMI) [Breiman 2001] is a global explainability method in which, for each 
feature, the values of that feature are shuffled across all input samples. The intuition is that if a 
feature is not being incorporated into the model’s decision, then replacing it with arbitrary values 
will not affect performance. 
 
Univariate perturbation approaches are simple to implement and model-independent but suffer 
from a few important drawbacks. The process of perturbing each feature individually is 
computationally demanding. The model must be evaluated for each feature, and for each 
perturbation that is required to get a sufficient estimate of the model impact. 
 
Not only are univariate perturbation approaches computationally intensive, they often also yield 
wildly inaccurate results. Measuring only univariate variable effects does not explain model 
behavior that depends on variable interactions. For example, in credit underwriting, the impact 
that an applicant’s income has on their score depends on the loan amount. For a small loan, 
greatly increasing an applicant’s income is probably not going to have a large impact on their 
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score. A permutation of income, even a large increase, might appear irrelevant to credit. This is 
likely to be wrong. 
 
One must take care when perturbing inputs that the perturbed input still makes sense. Consider 
a variable such as a car’s down payment. Permutation feature importance could, by substituting 
a down payment for a Porsche on a cheaper Ford Fusion, end up evaluating the model on 
applications with down payments that are greater than the loan amount itself. Not only do these 
“made up” data points fall well outside of the space of data that the model was trained on, they 
violate the fundamental logic of the problem domain. 

5.4 Visualization 

Univariate or bivariate feature importance can be demonstrated graphically. Partial Dependence 
Plots (PDPs) [Friedman 2001] compute the model output for fixed values of features under 
study, averaged over all input samples. This produces a curve (1D) or heatmap (2D) of how a 
feature’s values generally influence the output. PDPs lose information by averaging over all 
inputs, which again ties into the problem of variable interaction. Independent Conditional 
Expectation (ICE) [Goldstein et al. 2015] plots attempt to alleviate this issue by plotting multiple 
response curves, which represents a split of the input samples by conditioning on certain 
variables. While useful, these tools provide graphical insight into the effect of a feature rather 
than true model explanations. In addition, such plots require human interpretation for each 
feature, which is hard for large numbers of features. 

5.5 Proxy models 

A complicated model can sometimes be sufficiently approximated by a simpler explainable 
model. If this proxy model can be shown to behave closely to the original model, then its 
explanation may be similar as well. Student-teacher [Buciluǎ et al. 2006] learning is one way to 
generate simple proxy models. The teacher is trained on the given task and used to generate 
predictions on the whole dataset. The student model is a less complex model that is trained on 
the same input data but with the teacher’s predictions as its target. The intuition here is that the 
predictions of the teacher provide a more easily learnable target for the simple model with less 
expressive power. While this paradigm makes sense for models of the same type, such as 
neural networks, differing only in architecture, it is unlikely that an inherently explainable model 
such as logistic regression or a decision tree would be able to accurately represent a powerful 
teacher. This can be clearly seen by trying to fit a linear proxy model to a parabola . Eveny = x2  
if two models make the same predictions on a set of examples, this is not a strong argument 
that they use the data in the same way. 
 
Local Interpretable Model-Agnostic Explanations (LIME) [Ribeiro et al. 2016] notes that simple, 
explainable models can locally approximate complex models. Explaining a model, therefore, 
involves building an explainable model at the point of interest. In LIME, data is sampled in the 
vicinity around the test point and used to train a proxy model (logistic regression or decision 
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tree) with the samples weighted inversely proportional to their distance from the test point. LIME 
provides black-box explainability and has empirically shown promising results, but suffers from 
some practical drawbacks. The process of sampling and training a proxy model for each input is 
computationally expensive. Sampling itself may be difficult in high-dimensional datasets where it 
is difficult to choose appropriate metrics and parameters to define a local neighborhood. 

5.6 Gradient methods 

Another approach to explainability is to capture the sensitivity of a model’s output to its inputs. 
For differentiable models, such as neural networks, this amounts to taking the gradient of the 
output with respect to the input [Simonyan 2013]. The simple case of a linear model reveals the 
effectiveness of this approach. Given the model,  
 

,(x) x x .. xf = a1 1 + a2 2 + . + an n + ε  
 
take the gradient with respect to a feature xi   
 

,f /∂x∂ i = ai  
 
to reveal that the sensitivity of the model to  is simply the coefficient  which weights thatxi ai  
feature. 
 
While the gradient applies to arbitrary differentiable models and corresponds to an intuitive 
definition of explainability, it suffers from a few drawbacks. Backpropagation is used to pass 
gradients from the output of the network to the inputs. Due to the use of nonlinear activation 
functions which rectify and clip the signals, neural networks have many “flat” regions in which 
the value of the gradient is zero. A zero gradient suggests that the factor does not matter, which 
could be correct, but complicated nonlinear models do actually extract information from flat 
regions. For this reason, plain gradients are not a perfect solution for propagating contribution 
through a network. Recent research [Kindermans et al. 2017] addresses this issue with 
techniques to pass gradients through flat regions. Many of these techniques are specific to 
certain architectures, activation functions, and application domains. 

6 Evaluating explanations 

The quality of an explanation is difficult to evaluate relative to the well-defined goal of model 
accuracy in supervised machine learning. Evaluating explanations is easier for visual machine 
learning tasks, such as object recognition, as the quality of the explanation can be compared to 
a human’s understanding of the important aspects of a scene. Other problem domains lack an 
obvious intuitive explanation and a human oracle may not be available for every input of 
interest. Automated evaluation of explanation quality is important to advance the field of 
explainability. For business applications, metrics can ensure the reliability of the explanation. 
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Aside from the lack of a ground truth, explaining a model is an ambiguous problem. If an 
explanation seems suspicious, there are two possibilities: 
 

1. The model is behaving erratically, and the explainer is accurately describing this 
behavior. 

2. The explainer is not properly describing model behavior. 
 
Deciding which of these two possibilities is truth is hard even for tasks where useful features are 
inherently known. This is problematic. A model explainability technique should be able to 
accurately describe model behavior. What is needed are means of assessing the accuracy and 
utility of an explainability approach for a given task. 
 
The process of evaluating an explainer is therefore not as simple as ensuring that its 
explanations put more weight on generally important features. In the literature, explainability 
techniques are often proposed along with fundamental properties that they satisfy. Confidence 
in the explainer is derived by showing, either theoretically or experimentally, that it satisfies the 
properties of a good explainer. Another approach to evaluating explainability techniques is 
based on the true goal of model interpretability, which is the information it conveys to the human 
user. A variety of experiments can be devised to test how explanations assist a user in the 
desired task. 

6.1 Comparison metrics 

The ability to compare two explanations is useful for evaluation purposes. Metrics for 
explainability are vital in research and development as well, providing a means of measuring 
improvement or regression from the state of the art. This is similar to distance metrics which 
compare two input samples. For two explanations to be similar, they must rank the features 
similarly in importance. Ranks may be compared with Spearman’s rank correlation coefficient 
[Pirie 2004], a nonparametric estimator of correlation in the orderings of two variables. Two 
explanations which produce the same ordering of feature importance receive a Spearman’s 
coefficient of +1. The rank of the least important features is not very meaningful because many 
features contribute trivially and their relative ordering is noise.  
 
Spearman’s coefficient weights the entire ordering equally, which may result in an explainability 
metric that does not align with human intuition. In top-​k​ intersection, the top-​k​ features for each 
explanation are computed and the number of features in common is used as a measure of 
similarity. This is more in line with the human perception of which features are driving a 
decision. The parameter  can be set by determining the number of features after which thek  
contribution values fall to a trivial level. 
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6.2 Properties of a good explanation 

The following properties, while not an exhaustive list, provide an extensive framework for 
comparing and evaluating explainability methods. These were developed through research and 
development at ZestFinance and curated from the literature on explainability. 
 

- Sensitivity to hyperparameters 
In supervised learning, the selection of hyperparameters can be conducted methodically 
through a carefully designed cross-validation process. Explainability methods also have 
hyperparameters, but lack of ground truth values preclude the same cross-validation 
process. Many practitioners resort to simply observing the top features from the training 
set in aggregate. With this difficulty in validation, it is important that explainers not be 
overly sensitive to their hyperparameter values. The property can be tested by perturbing 
hyperparameters and observing the change in the explanations. 
 

- Variance 
Explainers that are not deterministic will produce different explanations each time they 
are run, even on the same input sample. Small variations in the amplitudes of the feature 
attributions are permissible, but if the rank ordering of features changes between runs 
this creates serious issues in the reliability of the explainer.  
 

- Smoothness 
If two input samples are extremely similar and are scored identically by the model, then 
one would expect the explanations for each of these inputs to be similar as well. Without 
such smoothness, explanations appear random and unreliable. To evaluate the 
smoothness of an explainer, take the nearest neighbor samples with the same 
predictions, and measure how close their explanations are. It is expected that if two 
samples are close in input space, then their explanations are highly correlated. 
  

- Precision 
Complex machine learning models make their decisions based on complicated 
relationships between their variables. It is important that an explainer has the power to 
follow the subtle behavior of a model. Some explainability methods seek to simplify the 
problem with proxy models, but if the proxy model is too simple, the details of local 
behavior will be missing in the explanations. One way to test for the precision of an 
explainer is to look at the diversity of features reported in the top-​k​. An explainer with no 
locality, such as a global linear proxy model, will always return the same features. 
 

- Accuracy 
If a given variable or feature is important to a model’s output, the explanation should 
report it as important. Establishing the accuracy of feature impact is a principle that 
guides many of the commonly used explainability methods such as permutation 
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importance and partial dependence plots. The ability to change the prediction of a model 
by changing the most important features is, therefore, a very intuitive measure of the 
explainer’s accuracy. It would be disconcerting to a denied credit applicant, for example, 
if the most important factors in the decision could not, in fact, change their score. 
 

- Treatment of correlated variables 
It is difficult to assign credit to correlated features even in linear models. 
Perturbation-based explainability techniques may miss the impact of these features 
entirely by perturbing them in isolation. The desired attribution amongst correlated 
variables is not clear and depends heavily on what the model is doing, however, the 
behavior of an explainer should be understood and consistent. A related problem is with 
one-hot encodings of categorical variables. If one of the categorical values is a 
particularly important predictor, then it is preferable to attribute the indicator of this value. 
Because only one of the one-hot indicators may be 1 for a given input, an explainability 
method may decide to weight the less important indicator, since its value being 1 implies 
that the truly important indicator is 0.  
 

- Robustness to outliers 

Explainability methods may grow unstable near the edges of the data space. This is a 
concern for methods like LIME which are based on samples from the distribution of the 
data. Ensuring consistency for outliers is important since explanations ensure that the 
model is using reasonable features for inputs in regions where the model did not have 
much training data. 
 

- Computational cost 

For production systems, explanations may need to be real-time or near real-time. Thus, 
an explainer should be able to efficiently explain both single inputs and batches of 
inputs. Explainability techniques vary greatly in their computational demands. Brute force 
computation of some techniques is completely intractable, while a gradient, for example, 
can be evaluated at the same time as a model prediction. 

6.3 User testing 

An explanation is only useful if people can use it to understand a model and act based on the 
model’s insights. This utility should be verifiable by experiment. For example, modelers should 
be able to use the explanations to predict which of two given models will generalize better, or 
use more robust logic in generating predictions from its inputs. A human user should be able to 
identify irregularities in a model and predict inputs which would be misclassified. If the 
explanations are accurately describing the model, the user will be able to make these 
predictions. 
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7 Two experiments show limits to current 

explainability techniques 

Explainability in machine learning is still very much an emerging field, lacking thorough testing 
and comparison procedures. In this paper, we perform two experiments to better understand the 
limits of the ability to explain supervised learning models using current techniques. The first 
experiment compares three popular explainers on a tree model trained on a toy classification 
dataset to visualize the mechanics of the algorithms, understand the effect of model 
hyperparameters, and diagnose potential failure modes. In the second experiment, we evaluate 
the explanations of a neural network model using a more robust Lending Club loan application 
dataset.  
 
Experimental evaluation of explainability methods has overwhelmingly focused on vision 
problems, as saliency maps can be compared by visual inspection. There has been less 
experimentation on other domain-specific machine learning applications such as credit 
underwriting and natural language processing. The tabular data of problems like credit 
underwriting lacks the local structure between neighboring columns that pixels have in image 
data. Categorical variables behave very differently than continuous variables, which poses 
additional difficulties. 
 
The results of the two experiments in this paper offer insight into the implementation of 
explainability methods and their performance for credit problems. We develop an extensive set 
of tests to evaluate the stability and validity of explainers. It is shown that popular explainers 
require extensive parameter tuning, and may produce unreliable results. Many explainers do not 
scale well computationally with the number of rows or columns of the dataset and are thus 
unsuitable for production. The ZAML explainer is evaluated and is shown to satisfy all the 
desired properties of a reliable explainability technique. 

7.1 Experiment One: Implementation issues of LIME 

To demonstrate the performance issues of LIME, we begin with a simple 2D classification 
problem. This toy dataset is shown in the figure below. The purple dots represent class 0 and 
the yellow dots class 1. The goal of the model is to label each input as belonging to one of the 
two classes. 
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An XGBoost classifier model is trained on this data. In the plot below, a heat map of the model 
output reveals the decision surface of the model.  

LIME can be used to understand the importance each feature plays in the model’s decision in 
different regions of the data space. The LIME explanations are computed at evenly spaced grid 
points, and the resulting explanation is displayed as a red arrow. The horizontal component of 
the red arrow corresponds to the explanation of the ​x ​feature, and the vertical component is the 
explanation of the ​y​ feature. 
 

 
 
The nature of LIME’s explanations depends heavily on its two main parameters. The first 
parameter is the kernel size, which determines the size of the local neighborhood around a point 
from which the linear proxy model is built. As the kernel size grows large, LIME approximates 
the model globally with a single linear model. The second parameter is the number of samples 
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that are used in estimating the proxy model. Drawing more samples results in a more stable 
explanation, but increases the computation time.  
 
To examine the effect of the kernel size, the figures below capture the neighborhoods LIME 
would use to explain a prediction at (0,0) given different sizes. The sampled neighborhood 
points are plotted beneath the data point, colored according to the prediction of the XGBoost 
model. The size of each neighborhood point is proportional to its weight in the estimation of the 
linear proxy model. The color represents the score given to each point by the model. Open 
source implementations of LIME choose a relatively high kernel size, as this ensures that 
samples from all classes will be present in the neighborhood. However, as can be seen from the 
figure on the right, if the kernel size is too large, the locality of the proxy model is lost. 
 

 
 
The effects of the kernel size on the resulting LIME explanations (the coefficients of the linear 
proxy models) are seen in the figure below. The arrow plot may be interpreted as the slope of 
the linear proxy model at that particular point, thus pointing in the direction of increasing model 
scores. For the smallest kernel size, the explanations point towards the closest prediction 
boundary. This provides a more precise description of model behavior, but in sparse regions of 
the data space, behavior becomes erratic. For samples where x > 1, the x-coordinate is entirely 
responsible for the prediction of class 1. The LIME neighborhood is so small that it does not 
contain a reasonably weighted sample from class 0 this far from the boundary. Thus, when 
LIME is truly local, the predictions become unreliable for many regions of the data space. 
 
When the kernel size is 1, LIME provides a reasonable explanation of samples near the 
simplest part of the classification boundary (y > 1). The larger neighborhood results in a smooth 
explanation space, but the finer details in the lower left corner are lost. For an extremely large 
kernel size of 10, LIME has lost all locality, and each proxy model is the same linear model fit on 
the unweighted dataset. 
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The effect of the number of samples that are drawn for the purpose of estimating a proxy model 
is illustrated in the figure below. With a kernel size of 1, LIME is repeatedly run 10 times, and 
the resulting explanation arrows are plotted to show the volatility under different numbers of 
neighborhood samples. With only 100 samples to estimate each proxy model, the explanations 
vary wildly, to the point where either feature could be considered more important, depending on 
the draw. As the number of samples increases, the LIME explanations approach determinism. 
There is a tradeoff between the volatility and computation time of LIME. The proxy model must 
be learned for each sample that is to be explained. In this simple 2-dimensional problem, 1,000 
samples suffice for a reasonable explanation, but as the dimensionality of the data grows, this 
might become a concern.  
 

 
 
One of the more difficult details in implementing LIME is drawing samples from the distribution 
of the data. Generative models [Goodfellow et al. 2016] address the problem of drawing 
accurate samples from the distribution of the data but are amongst the most difficult models to 
train in machine learning. The authors of LIME simply estimate the univariate means and 
standard deviations for each feature and draw each feature independently from these 
independent normal approximations. For some types of data, this may be a reasonable 
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approximation, but this will pose problems, especially with categorical data types, as will be 
shown in the next section. 
 
From this experiment, it is clear that LIME is very sensitive to its parameters. Even in 2 
dimensions, a very large number of generated samples is needed to get stable performance. 
This will worsen in higher dimensions. The kernel width parameter is easier to estimate for a 
visualizable dataset, but will also be a much more difficult problem for real datasets. For real 
data, the Gaussian assumption for the sampling distribution may be unreasonable.  

7.2 Experiment Two: Explaining performance on real credit data 

In our second experiment, we went beyond the limitations presented for toy datasets by 
attempting to explain a model built on a large, publicly available 2007-2011 data set from the 
online loan marketplace The Lending Club. The data included 42,538 loan applications and their 
payment status. Records with a loan status of “Charged Off” or “Fully Paid” were selected, with 
these statuses serving as the classification target. Feature engineering was deliberately kept 
simple. Commonly used variables were selected by hand, categorical variables were one-hot 
encoded, and missing values were imputed with the mean, while adding a binary column to 
indicate if the value was missing. This resulted in 39,088 input records with 35 dimensions. The 
first 35,000 records were used for training and the remaining 4,088 were reserved for evaluating 
explainers. The data was standardized by subtracting the mean of each column and dividing by 
the standard deviation.  
 
We built a neural network model with 4 dense layers with ReLU activations and dropout 
regularization. The model had a test set performance of 0.703 AUC. Three explainers were run 
on this model: permutation importance (PI), LIME, and the ZAML explainer (ZAML), which is 
based on vector calculus. We evaluate their performance here based on the properties 
described in the “Evaluating explanations” section of this paper 
 
Variance 

Permutation importance (PI) and LIME are stochastic algorithms, while the ZAML explainer is 
deterministic. While some randomness in an explanation is acceptable, an explainer that 
provides different feature rankings across subsequent runs is undesirable. The randomness in 
PI originates from the shuffling of the columns to determine model sensitivity to that feature. The 
number of times each column is shuffled is a parameter called ​cycles​, and it controls the 
tradeoff between determinism of the explanation and computational cost. In the plot below, the 
explanations from PI are generated for the Lending Club test set, and the variance across 10 
runs is computed for each feature level attribution. We plot the average variance over all inputs 
and columns as a function of the ​cycles ​parameter. By increasing the cycles, the variance of PI 
can be greatly reduced at the expense of increased computational cost. Each additional cycle 
requires ​D ​additional model evaluations, where ​D​ is the dimensionality of the feature space. 
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Randomness in LIME arises from the neighborhood sampling procedure. As with PI, there is a 
tradeoff between determinism and computational cost, which is controlled by the number of 
samples. Estimating a proxy model with more samples has increased cost, but results in a more 
stable explanation. In the plot below, the average variance of explanations over 10 runs is 
shown for LIME as a function of the number of samples. For a low number of samples, the 
variance is very large relative to permutation impact. 
 

 
 
Sensitivity to hyperparameters 

Aside from the parameters that affect randomness, explainers have additional hyperparameters 
that control the nature of the explanations. LIME has the kernel width, which dictates the 
effective neighborhood size around the point of interest. The kernel width greatly affects the 
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resulting explanation. In the figure below, the top 9 most important features are shown for 
increasing kernel widths. 
 

 

 

In addition to the kernel width, the sampling procedure itself is a design choice in LIME. 
Sampling a realistic local neighborhood around a point of interest is a very difficult task and 
common implementations of LIME model each feature as a univariate Gaussian random 
variable. This means that LIME explains the prediction of a model based on a neighborhood of 
samples which may be highly unrealistic.  
 
The first row in the table below is an actual applicant in the Lending Club dataset, followed by 9 
rows of application data generated by LIME as the neighborhood. The highly correlated 
variables of ​loan_amnt ​ (loan amount) and ​installment ​ are no longer correlated. 
Additionally, variables like ​annual_inc ​ (annual income) may contain negative values. The 
model was not trained on data like these samples and they do not provide reliable insight about 
its behavior. 

 
 
The ZAML explainer involves the computation of a path integral along the manifold of the data 
and is approximated with discrete steps. The number of steps determines the quality of the 
approximation. Taking the top 9 most important features for the number of steps set to 2, 10, 
and 20 reveals that the explanation is not overly sensitive to this parameter. 
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Smoothness 

If two inputs to a model are very similar and receive the same scores from the model, then one 
would expect the explanations of these inputs to be similar as well. This property is known as 
smoothness. To measure smoothness, we find the nearest neighbor for each test applicant (if it 
received the same score from the model). For each pair of neighboring inputs, the distance 
between the two is calculated. Then the explanations of the two samples are compared with 
Spearman’s rank correlation coefficient. For a consistent explainer, if the distance between a 
pair of inputs is very small, then the explanation will have a Spearman’s coefficient near 1.  
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In the plots above, the ZAML explainer displays the strongest negative correlation between the 
distance of a sample pair and the similarity of their explanations, followed by LIME. For 
permutation importance, similar samples can result in quite different explanations. From a 
business perspective, smoothness in the space of explanations provides a sense of fairness in 
the model’s decisions. Discrepancies in model outcomes for two similar scenarios creates 
dissonance in the human interpretability of the model’s functionality. 
 
Precision 

As we mentioned earlier, the precision of an explanation is based on how varied the 
explanations are across the data space. Modern machine learning models get their predictive 
power because they can model complex local behavior, extracting signals among different 
features in different regions of the data space. A global linear proxy model returns the same 
explanation for every input and is thus not a good candidate for explaining a nonlinear model 
like the one we built off the Learning Club data. To show the relative precision of the various 
techniques, we took the top 5 features for each sample in the testing set, and build a histogram 
of how often each feature appears in the top 5. 
 
These histograms are shown below. ZAML and permutation impact show a few features which 
almost always are in the top 5. In fact, these methods have significant overlap in their 
explanations. The frequency of less common features decays gradually. LIME only selects 2 
features with significant frequency: the interest rate and the flag indicating if a public record is 
available. The rest of the features receive very little attribution and essentially fluctuate as noise.
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Why does LIME produce such unvaried explanations? The kernel width parameter must be set 
relatively high in order to keep a sufficient number of samples in the local neighborhood from 
which the linear proxy model is estimated. If the neighborhood size is too small, particularly with 
higher dimensional data, the linear model estimation will be ill-posed. Thus, a larger kernel width 
is favored, and the proxy model no longer accurately represents the neural network, but rather a 
highly smoothed version of it with no complex local behavior. 
  
Accuracy 

The ​accuracy​ of an explanation is especially important in the credit domain as the Fair Credit 
Reporting Act requires that all credit denials come with reasons that accurately describe the key 
factors that led to an applicant being denied. The adverse action notice provided to the 
customer must describe key factors a consumer can change in order to improve their likelihood 
of being approved. Accurate reasons are therefore required to comply with the law in the United 
States and many other jurisdictions.  
 
To evaluate the accuracy of an explainer, consider the top feature for each loan applicant. We 
replicated the input, but replaced the top feature with every possible value in its range. The 
model was evaluated with these synthetic inputs to determine the maximum possible change in 
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score from the original input. If this value was small, then the top feature was not really 
influential in the model’s decision.  
 
For a single input, this can be visually interpreted from a partial dependence plot (PDP). The 
x-axis represents the value of the feature of interest, and the y-axis represents the resulting 
model prediction. In the plots below, the impacts of the top features predicted by the 3 
explainers are shown for a single input. In this case, all explainers produce a meaningful 
explanation. 
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To compare the accuracies of the 3 explainers, we show the distributions of the maximum 
impacts of the top features for the test set. Permutation importance produces a top feature with 
the highest impact, which is a reasonable outcome considering this test is essentially what the 
permutation importance uses to produce its explanation. The ZAML explainer, while built from 
completely different principles, produces reasonably impactful top features. The top feature of 
LIME is not impactful. The LIME technique fails to identify the most impactful variables. 
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8 Conclusion 

The techniques used today to explain linear models are not safe to use for machine learning, 
nor are many of the leading methods created to explain machine learning models. For 
explaining a neural network model, like the one we built using Lending Club data, LIME was not 
a reliable explainability technique. Sampling a local neighborhood becomes increasingly difficult 
as the number of features grows. Setting hyperparameters for LIME is unfortunately too much of 
an art given the sensitivity of the results to its parameters and the lack of ground truth. It is 
possible that for many problems, a single neighborhood size parameter will not work globally. 
The randomness in the algorithm can only be mitigated by drawing a large number of 
neighborhood samples, which increases computational costs.  
 
Permutation importance and ZAML both present reasonable explanations, which is supported 
by the fact that their top features can be manipulated to greatly affect the model prediction. Both 
methods have significant overlap in the features they identify as important, which is additional 
evidence in the correctness of their results. The diversity of top 5 features shows that they both 
capture local behavior, rather than a single global explanation. ZAML provides a more 
consistent explanation in the sense that similar inputs receive similar explanations. It is also a 
deterministic algorithm, which is an important property, especially in credit, where fluctuations 
between two runs of the algorithm may be hard to defend. 
 
Computational cost is an important property of explainers for systems that must run in near 
real-time. The cost of LIME is essentially fitting a linear model for each input that is to be 
explained, a task that quickly becomes intractable when a model has even just hundreds of 
variables. The cost of least-squares regression depends on the number of samples in the local 
neighborhood and the dimensionality of the data.  
 
Permutation importance and the ZAML explanation can be compared more directly. For a 
dataset with ​D ​features, permutation importance requires ​D*cycles​ model evaluations to explain 
each input. The ZAML explanation requires model evaluations equal to the ​number_of_steps 
parameter. Experimentally, we observed stable explanations for permutation importance with 
about 50 cycles, and for ZAML with 10 steps. In a dataset with 100 features for example, PI will 
take about 500 times longer than ZAML, and this gap only increases with the dimensionality of 
the data. 

9 Explainability At Zest 

Zest has developed over the last few years wholly new model explainability methods that 
provide accurate and repeatable explanations at a row, segment, and global level for ensembles 
of heterogeneous ML models. The explainability is achieved through methods that cover 
differentiable and non-differentiable models. We have solved for numerical precision issues and 
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provided methods for combining explanations of diverse submodels. This capability, when 
paired with ZAML’s analysis, monitoring, and automated documentation enables lenders to 
safely and quickly apply advanced ML models in credit underwriting and in other regulated 
applications where consistency, accuracy, and performance is paramount. 
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Why Lenders Shouldn't 'Just Use SHAP' 
To Explain Machine Learning Credit Models 

 

Everyone wants to solve AI’s black box problem: the dilemma of understanding how a 
machine learning (ML) computer model arrives at its decisions. The hard part is figuring 
out the influence of each of the hundreds or thousands of variables interacting in nearly 
infinite combinations to derive an outcome in an ML model. 

In 2017 two computer scientists from the University of Washington published a 
technique for generating fast and practical explanations of a particular kind of ML called 
tree-based models (specifically, a variant called XGBoost). The algorithm’s authors 
named their work SHAP, for Shapley additive explanations, and it’s been used 
hundreds of times for coding projects. 

The Shapley name refers to American economist and Nobelist Lloyd Shapley, who in 
1953 first published his formulas for assigning credit to “players” in a multi-dimensional 
game where no player acts alone. Shapley’s seminal game theory work has influenced 
voting systems, college admissions, and scouting in professional sports. Shapley 
Values work well in machine learning, too. The catch is that they’re expensive to 
compute. In a game or model with just 50 variables you’re already looking at 
considering more options than there are stars in the universe. 

That’s where SHAP comes in. SHAP approximates Shapley values quickly by cleverly 
using the tree structure of XGBoost models, speeding up the explanation time enough 
to make it practical to assign credit to each variable. Some banks and lenders eager to 
use machine learning in credit underwriting or other models are asking themselves, 
“Why not just use SHAP to power my explanation requirements?" 

Fair question. The answer? Because that would be irresponsible for a bunch of reasons. 
For credit and finance applications, bridging from off-the-shelf SHAP to a safe 
application takes a lot of care and work, even if you just want to explain XGBoost 
models. Credit risk models must be treated particularly carefully because they highly 
regulated and significantly impact consumers’ lives. When a consumer is denied credit, 
the Fair Credit Reporting Act of 1970 requires accurate and actionable reasons for the 
decision so that consumers can repair their credit and re-apply successfully. 

SHAP is a practical solution for some use cases of ML, but in credit underwriting, it just 
doesn’t hold water on its own. Here are a few reasons why we’ve faced serious 
challenges in our attempts to apply SHAP in credit risk -- and why we had to invent 
something new. 
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Score space vs margin space - these details really matter 

Lending businesses want to be able to set a target and approve, say, 20% of applicants. 
That means the business wants a function that outputs numbers between 0 and 100, 
where 0 is the worst and 100 is the best, and for which exactly 20% of all scores lie 
above 80, 30% of all scores lie above 70%, and so on. This well-defined output is said 
to be in “score space." 

The score space is very different mathematically from the credit model’s actual output, 
which is said to be in “margin space.” Margin space numbers fall in a narrow range from 
0 to 1. In general, the relationship between the model’s actual output in margin space 
and the acceptance threshold in score space is extremely non-linear, and you have to 
transform the model’s output to generate the number the lending business wants. Don’t 
worry, you’re not the only one that struggles to keep track: we do too, and while 
technical, the margin space/score space transition really matters. 

The problem with SHAP is that, because of the way it computes its Shapley values, it 
really only works in margin space. If you compute the set of weighted key factors in 
margin space, you'll get a very different set of factors and weights than if you compute 
them in score space, which is where banks derive their top five explanations for 
rejecting a borrower. Even if you are using the same populations and are only looking at 
the transformed values, you will not get the same importance weights. Worse, you likely 
won’t end up with the same factors in the top five. 

The table below shows how this plays out for a real applicant for an auto loan. The 
reasons returned to the rejected borrower were dramatically different when translated 
from margin space to score space. If you skipped this important step, and just used 
SHAP out of the box, you would have thought the main reason for denial was the 
bankruptcy count. But the real top reason for denial, in score space, was the number of 
credit inquiries. A consumer relying on reasons generated by margin space attribution 
would be misled. Getting this wrong could have devastating consequences to 
consumers seeking to access financing for their first house or car, who rely on denial 
reasons to improve their ability to access credit. It could also cause a lender to run afoul 
of fair lending and fair credit rules. 
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Why does this happen? Because SHAP derives its values by looking at all the results of 
taking a path down each tree in the model, and it assumes that the sum of the values 
along a set of paths down a tree gives you the score -- basically, you can compute the 
score with only the data in the trees. That's not true when you transform into score 
space; the transformation destroys that structure. SHAP can also have trouble 
recovering even a simple model’s internal structure, as we’ll explain in the last point. 

Explanation by reference 

SHAP computes variable importance globally, which means it shows how the model 
behaves for every applicant (in margin space) with respect to the overall model itself. In 
credit risk modeling, it is often required to understand an applicant’s score in terms of 
another applicant or applicant population, that is, with respect to a reference population. 
For example, when lenders compute the reasons an applicant was rejected (for adverse 
action notices), they want to explain the applicant’s score in terms of the approved 
applicants. When they do disparate impact analysis lenders want to understand the 
drivers of approval rate disparity. This requires comparing the feature importance for the 
population of, say, white non-Hispanic male applicants to protected groups and 
performing a search for less discriminatory alternatives. These are illustrated in the 
diagrams below. 
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Left: Adverse action requires comparing the denied applicant to good borrowers. 

Right: Fair lending analysis requires comparing minority applicants with non-minority 
applicants. 

There are many details you need to get right in this process, including the appropriate 
application of sample weights, mapping to score space at the approval cut-off, sampling 
methods, and accompanying documentation. Out of the box, SHAP doesn’t allow you to 
easily do this. 

You want to use modeling methods other than XGBoost 

Using SHAP is hard enough because it outputs values in margin space that you have to 
correctly map into score space. But it has other important limitations. Although SHAP 
provides fast explanations for gradient-boosted tree models, there are many other 
mechanisms for building scoring functions, including many alternative forms of tree 
models such as random forests and extremely random forests, not to mention other 
implementations of gradient boosting such as LightGBM. 

You may also want to use continuous modeling methods such as radial basis function 
networks, Gaussian mixture models, and, perhaps most commonly, deep neural 
networks. The current implementation of SHAP cannot explain any of the other types of 
tree models, and cannot explain any continuous model outside a small collection, and 
only by importing algorithms other than SHAP. 

What’s more, SHAP cannot explain ensembles of continuous and tree-based models, 
such as stacked or deeply stacked models that combine xgboost and deep neural 
networks. In our experience (and the experience of others), these types of ensembled 
models are more accurate and stable over time. That’s why we built ZAML to explain a 
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much wider variety of model types, enabling you to use world-beating ensembled 
models to drive your lending business. 

Even on a simple XGBoost model, SHAP fails to uncover the underlying geometry 

Machine learning models are effectively geometric entities: they embody the idea that 
things near to one another will tend to be mapped to the same place and then produce 
systems which reflect that structure. A good example of this is the ovals dataset, a two-
dimensional dataset consisting of a set of points drawn uniformly from two overlapping 
ovals with the same number of points drawn from each. The ovals from which the points 
are drawn are arranged roughly vertically in the chart below, and the model is trained to 
predict membership in one or the other oval given the coordinates of a point. For 
convenience, the oval with a greater y value is arbitrarily assigned the target value 1 
and the oval with the less y value is assigned the value 0. 
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When viewed geometrically, this dataset is inseparable: points in the overlapping region 
are equally likely to have been drawn from either of the two ovals and so no classifier 
can predict membership for any such point. 

Intuitively, one would expect a classification function defined for the ovals dataset to 
correspond to three regions: a region of points belonging only to the upper oval, a 
region of points common to the two ovals, and a region of points belonging only to the 
lower oval. We trained an XGBoost model on a random sample of half of the ovals 
dataset, and looked at the model’s predictions on the other half. 

The chart below shows the model’s predictions, and we can see the three regions we 
expected. The blue represents scores the model assigned to the bottom region, the 
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green the middle, and the red, the top. As you can see the model produces nicely 
separated outputs. 

 
We should see that same separation when we look at the explainer outputs. One would 
intuitively expect that items in the upper region will have average attributions which are 
relatively large and positive, items in the common area to have attributions which are 
relatively close to zero, and items in the lower region to have average attributions which 
are relatively large and negative. If the explainer doesn’t reflect this structure, it isn’t 
really explaining the model, and probably shouldn’t be trusted. To investigate that 
question, we compared SHAP attribution weights with the attribution weights generated 
by Zest’s ZAML software in the charts below. 
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Let’s walk through what we’re seeing. The left column shows the feature importance for 
each model prediction, as assigned by ZAML. The right column shows the feature 
importance for each model prediction as generated by SHAP. The top row is the feature 
importance for f0, the x coordinate in our ovals dataset. The bottom row is the feature 
importance for f1, the y coordinate. The blue, green and red colors correspond to the 
bottom, middle and top regions, respectively. 

As you can see, ZAML readily separates the top, middle, and bottom regions -- notice 
how the blue green and red bars are all nicely separated in the charts in the left column 
-- while SHAP, shown on the right, gets them all jumbled up. The results suggest that 
SHAP may not be the right tool to use off the shelf for the rigorous and regulated 
requirements of credit underwriting. 

We did not expect these results when we first saw them, and frankly we thought they 
were wrong. After careful review by multiple teams inside and outside the company, 
however, we’re confident they’re not. Look for a scientific paper describing our 
algorithm, a mathematical proof of its correctness and uniqueness, and other empirical 
results to be published soon. In the meantime, if you care about getting your model 
explanations right, feel free to reach out to us. 

SHAP was a giant leap forward in model explainability. The use of a game-theoretic 
framework to explain models is powerful and creative. Nonetheless, as the above 
analyses show, you really need more than just the out-of-the-box SHAP to provide the 
kind of accurate explanations required for real-world credit decisioning applications. 
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Even on a simple XGBoost model, SHAP can provide inaccurate explanations, and care 
must be taken to map into score space correctly and to mitigate numerical precision 
issues, when computing explanations by reference. Before diving head first into ML 
explainability with SHAP, it is important to understand its limitations and determine 
whether or how you will address those limitations in your ML application. Credit 
decisions make lasting impacts on people’s lives and getting the explanations right 
matters. 
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FAQs ZestFinance has received on the Application of 
the Federal Agencies’ Banking Supervisory Guidance 

on Model Risk Management to Machine Learning 
Models  

NOTE TO READERS: ZestFinance, Inc. helps lenders transition from conventional 
underwriting methods to machine learning-based underwriting. In the course of our 
work, we often receive questions from executives at financial institutions about the 
applicability of the federal banking agencies’ Supervisory Guidance on Model Risk 
Management (the Guidance) to machine learning models.1 The Guidance clearly applies 
to machine learning-based underwriting models. Machine learning models, however, 
differ from traditional models in ways that raise unique issues regarding their evaluation, 
testing, and documentation under the Guidance. The FAQs below reflect the questions 
Zest receives most frequently on this issue. The accompanying answers set forth Zest’s 
current views on best practices for the responsible adoption of machine learning models 
consistent with the Guidance, as well as the goals of ensuring safety and soundness in 
the financial system, increasing access to credit, and minimizing fair lending and other 
compliance risk.  

SUMMARY  

The financial services industry is increasing its adoption of machine learning (ML) for a 
range of applications. ML models are powerful at predicting outcomes because they can 
consider more data than traditional models and apply sophisticated mathematical 
techniques to evaluate multiple variables and the relationships between them, and 
continually refine and improve their underlying algorithms to enhance performance and 
predictive power on an ongoing basis. ML technologies have the potential to bring 
unbanked and underbanked consumers into the financial system, enhance access to 
responsible credit, and contribute positively to the overall safety and soundness of the 
financial system. Increased predictive power, however, comes with increased 
                                                        
1 The Guidance was issued by the Board of Governors of the Federal Reserve System (FRB) and the 

Office of the Comptroller of the Currency (OCC) in 2011, and adopted by the Federal Deposit Insurance 

Corporation (FDIC), with technical conforming changes, in 2017. 
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complexity. The use of these advanced new modeling techniques in financial services 
raises important issues of risk management.  

The Guidance establishes a framework for effective model risk management that 
focuses on appropriate development, documentation, validation, and governance 
standards for models used by financial institutions. The guidance applies to all modern 
modeling techniques, including machine learning models. However, the Guidance was 
adopted in 2011, largely before ML was common, and thus does not address ML 
models. While the principles articulated in the Guidance remain sound and appropriate 
for all models, certain particulars and examples in the Guidance do not reflect the way 
ML models function. Different validation approaches, built largely upon current 
approaches, are more effective at meeting the Guidance’s goals when using ML 
models.  

These FAQs cover the application of the Guidance to the use of ML models by financial 
institutions and describes methods for complying with key aspects articulated in the 
Guidance given the unique risks posed by ML techniques. The questions below do not 
address all aspects of the Guidance; instead, they are the questions Zest is most 
frequently asked by executives at financial institutions considering the use of machine 
learning. The accompanying answers represent Zest’s current thinking on how financial 
institutions may use ML models responsibly and consistent with the Guidance.  

SECTION III: OVERVIEW OF MODEL RISK MANAGEMENT  

For new machine learning models, can lenders use techniques for model risk 
management different from those outlined in the Guidance that they determine to be 
more appropriate for such models?  

● Yes. The Guidance is not prescriptive, but illustrative. The selection of model risk 
management techniques should be based, in part, on the type, complexity, and 
functional attributes of the model. ML models operate differently than traditional 
models; thus, it is appropriate to consider alternative approaches to model risk 
management.  

Is it acceptable to use machine learning models in high stakes financial services 
decision-making?  

● Yes. Nothing in the Guidance precludes the use of machine learning models. The 
Guidance applies to a financial institution’s use of any “model,” which it defines 
as a “quantitative method, system, or approach that applies statistical, economic, 
financial, or mathematical theories, techniques, and assumptions to process 
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input data into quantitative estimates.” ML models fit squarely within this 
definition.  

● Fairness, anti-discrimination, and safety and soundness goals tend to support the 
use of more predictive models, including machine learning models. As many as 
fifty million Americans have incomplete or inaccurate credit bureau data. Millions 
of these consumers are denied access to credit by lenders using conventional, 
static credit scoring techniques because those models often inaccurately predict 
default risk. Machine learning models are resilient to incomplete data, able to 
consider more variables, and capable of creating models that more accurately 
assess credit risk. Consequently, ML’s enhanced predictive power has the 
potential to safely expand access to credit while reducing losses and systemic 
risk.  

● However, ML-based credit risk models must be validated, documented, and 
monitored using methods appropriate to the modeling approach selected in order 
to comply with the principles articulated in the Guidance. As discussed below, 
conventional validation approaches are not sufficient to evaluate ML models. ML 
model developers and institutions should take care to conform their practices to 
the principles in the Guidance regarding Model Development Implementation and 
Use, and Model Evaluation and Verification standards using techniques robust 
enough to assess and explain the performance of ML models.  

SECTION IV: MODEL DEVELOPMENT, IMPLEMENTATION, AND USE  

Can you use as many variables as desired in a model?  

● Yes. The Guidance does not address, or limit, the number of variables that may 
be used in a model, and nothing in the Guidance suggests that fewer variables 
necessarily decreases risk. ML models can consider many more variables than 
traditional methods, which is a key reason why ML models often provide greater 
predictive power, and deliver superior results, compared to traditional models.  

● The same data review and documentation practices outlined in the Guidance still 
apply to ML models even though ML models consider many more variables than 
traditional models. As the Guidance indicates, “there should be rigorous 
assessment of data quality and relevance, and appropriate documentation. 
Developers should be able to demonstrate that such data and information are 
suitable for the model.”  

Can model developers analyze vastly more variables and still comply with the 
Guidance?  
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● Yes. As the Guidance states: “Developers should be able to demonstrate that 
such data and information are suitable for the model and that they are consistent 
with the theory behind the approach and with the chosen methodology. If data 
proxies are used, they should be carefully identified, justified, and documented.”  

● ML models consider hundreds or even thousands of variables, so it may be 
impractical to manually review all of them. An automated variable review may be 
the most effective way to support comprehensive analysis and documentation of 
the data and the model. Automated variable review methods should identify and 
document data issues that could raise questions about the predictive power, 
fairness, and safety and soundness of a model. Notably, variables should be 
reviewed for unexpected and/or inconsistent distributions, mappings, and other 
data degradation issues that can lead to model misbehavior. In connection with 
reviewing data variables, ML models will detect patterns and relationships among 
variables that no human would detect. This continuously evolving multivariate 
analysis is what makes any assessment of the data during the development 
phase problematic. The Guidance calls for documentation of these review 
methods and descriptions of the assumptions and theoretical basis for their use.  

SECTION V: MODEL VALIDATION  

What methods are permissible for assessing the soundness of an ML model?  

● The Guidance does not prescribe any specific method for validating any model, 
including a machine learning model. Nonetheless, the Guidance sets out a core 
framework for effective model validation: evaluation of conceptual soundness, 
ongoing monitoring, and outcomes analysis.  

● Regarding soundness, certain conventional evaluation methods described in the 
Guidance would, if applied to ML models, be ineffective and would likely produce 
misleading results. For example, one of the testing methods identified by the 
Guidance is sensitivity analysis. Common implementations of sensitivity analysis 
include exploring all combinations of inputs and permuting these inputs one-by-
one (univariate permutation) in order to understand the influence of each variable 
(or a combination thereof) on model scores. Exploring all combinations of inputs 
(exhaustive search) is computationally infeasible for most ML models. Univariate 
permutation (permuting inputs one-by-one), while more computationally tractable, 
yields incorrect results for ML models that capture and evaluate multivariate 
interactions.  

● Effective ML model evaluation techniques should be efficient and tractable, and 
designed to test the how ML models actually work. Such techniques should also 
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assess the impact of multivariate interactions because ML models evaluate such 
interactions. Appropriate methods of evaluating ML models include techniques 
derived from game theory, multivariate calculus, and probabilistic simulation.  

How do the Guidance’s monitoring standards apply to ML models?  

● The Guidance calls for ongoing model monitoring: “Such monitoring confirms that 
the model is appropriately implemented and is being used and is performing as 
intended...” The Guidance further states: “Many of the tests employed as part of 
model development should be included in ongoing monitoring and be conducted 
on a regular basis to incorporate additional information as it becomes available.”  

● A thorough approach for monitoring ML models should include:  

o Input distribution monitoring: Recent model input data may be compared 
with model training data to determine whether incoming credit applications 
are significantly different from model training data. The more that live data 
differs from training data, the less accurate the model is likely to be. This 
data comparison is typically done by looking at variable distributions and 
ensuring recent data is drawn from a similar distribution as occurred in the 
model training data. For ML models, multivariate input variable 
distributions should be monitored to identify input data where 
combinations of values that were unlikely to appear together during model 
development are now occurring in production. Systems for monitoring 
model inputs should trigger alerts to monitors or validators when they spot 
anomalies or shifts that exceed pre-defined safe bounds.  

o Missing input data monitoring: Comprehensive model monitoring should 
include monitoring for missing input data. Model input data comes from a 
variety of sources, some of which is retrieved over networks from third 
parties. Data sources could become unavailable in production. A complete 
model monitoring program should monitor and trigger alerts to monitors 
and validators when the rate of missing data, and its impact on model 
outputs and downstream business outcomes, exceed pre-defined 
thresholds.  

o Output distribution monitoring: Model outputs should be monitored by 
comparing distributions of model scores over time. Monitoring systems 
should compute statistics that establish the degree to which the score 
distribution has shifted from the scores generated by the model in prior 
periods such as those contained in training and validation data sets.  
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o Execution failure monitoring: Error and warning alerts generated during 
model execution can indicate flaws in model code that may affect model 
outputs. Such alerts should, therefore, be closely monitored, the causes of 
such alerts should be investigated and identified, and appropriate 
remediation should be implemented where necessary.  

o Latency monitoring: Model response times should be monitored to ensure 
model execution code and infrastructure meet the latency requirements of 
applications and workflows that rely on model outputs. Models that 
perform slowly or with unreliable execution time may cause intermittent 
timing issues, which can result in the generation of inaccurate scores. 
Establishing clear latency objectives and pre-defined alert thresholds 
should be part of a comprehensive model monitoring management 
program.  

o Economic performance monitoring: A complete ML model monitoring 
solution should include business dashboards that enable analysts to 
configure or pre-define alert triggers on key performance indicators such 
as default rate, approval rate, and volumes. Substantial changes in these 
indicators can signal operational issues with model execution and, at a 
minimum, should be investigated and understood in order to manage risk.  

o Reason code stability: Reason codes explain the key drivers of a model’s 
score. Reason code distributions should be monitored because material 
changes to the distributions can indicate a change in the character of the 
applicant population or even in the decision-making logic of the ML model.  

o Fair lending analysis: Machine learning models can develop unintended 
biases for a variety of reasons. Relatedly, like any model, ML models can 
result in disparities between protected classes. To ensure that all 
applicants are treated fairly and in a non-discriminatory manner, it is 
important to monitor loan approvals, declines, and default rates across 
protected classes. Historically, this monitoring has been done far after the 
fact. Because of the possibility of bias and the advanced predictive fit of 
ML models, monitoring of these models should occur in real time.  

Should model monitoring include automation?  

● Yes. The Guidance states: “monitoring should continue periodically over time, 
with a frequency appropriate to the nature of the model.” Given the complexity of 
ML models, automated model monitoring, which can run concurrently with model 
operations, is essential to meet the expectations set by the Guidance, especially 
when combined with multivariate input monitoring and alerts. Changes to input 
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and output distributions should be monitored in real time to identify problems 
promptly and reflected in periodic reports.  

How should model outcomes be analyzed?  

● As the Guidance recommends, model outcomes should be thoroughly 
understood prior to adoption and deployment of any new model, including ML 
models. Because machine learning models can consider many more data points 
than traditional models, traditional tools such as manual review of partial 
dependence plots can be cumbersome or inaccurate. Such tools can also miss 
crucial aspects of ML model behavior, such as the influence of variable 
interactions. In addition to understanding fully how a model arrives at a score, it 
is important to understand the swap sets generated by switching to a new model: 
that is, which applicants will now be approved (swap-ins) and which will now be 
denied (swap-outs). While the quantity of applicants is important, so is the quality 
of applicants. Outcomes validation methods should include an examination of the 
distribution of values for all model attributes of swap-ins and swap-outs, as well 
as a comparison with populations already accepted and with known credit 
performance. 

SECTION VI: GOVERNANCE, POLICIES, AND CONTROLS  

How do the Guidance documentation requirements apply to ML models?  

● As the Guidance states, “documentation of model development and validation 
should be sufficiently detailed so that parties unfamiliar with a model can 
understand how the model operates, its limitations, and its key assumptions.”  

● Meeting the requirement for thorough documentation of advanced modeling 
techniques can be challenging for model developers because ML models can 
process many more variables than traditional models, ML algorithms often have 
many tunable parameters, ML “ensembles” can join both many variables and 
many tunable parameters, and all of these must be thoroughly documented so 
the model can be reproduced.  

● These issues largely do not apply to logistic regression-based underwriting 
models, which are easier to understand and explain but less predictive.  

● In the case of ML models, documenting how a model operates, its limitations, 
and its key assumptions requires using explainability techniques that accurately 
reveal how the model reached its decisions and why.  
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● Entities should ensure that they use explainability methods that accurately 
explain how a model operates. Most commonly used explainability methods are 
unable to provide accurate explanations. For example, some methods (e.g., 
LOCO, LIME, PI) look only at model inputs and outputs, as opposed to the 
internal structure of a model. Probing the model only externally in this way is an 
imperfect process leading to potential mistakes and inaccuracies. Similarly, 
methods that analyze refitted and/or proxy models (e.g., LOCO and LIME), as 
opposed to the actual final model, result in limited accuracy. Explainability 
methods that use “drop one” or permutation impact methods (e.g., LOCO and PI) 
rely on univariate analysis, which fails to properly capture feature interactions 
and correlation effects. Finally, methods that rely on subjective judgement (e.g., 
LIME) create explanations that are both difficult to reproduce and overly reliant 
on the initial judgement. These errors in explanation cause model accuracy to 
suffer. Even slight inaccuracies in explanations can lead to models that 
discriminate against protected classes, are unstable, and/or produce high default 
rates. Models that rely on mathematical analyses of the underlying model itself, 
including high-order interactions, and do not need subjective judgement are 
appropriate explainability methods.  

Should model documentation include automation?  

● Yes. Although the Guidance is silent on whether model documentation may be 
generated automatically, automated model documentation is the most practical 
solution for ML models. ML model development is complex, and operationalizing 
and monitoring ML models is even harder. It is not feasible for a human, unaided, 
to keep track of all that was done to ensure proper model development, testing 
and validation. There are tools to automate model documentation for review by 
model developers, compliance teams, and other stakeholders in the model risk 
governance process. Given the number of variables in ML models, automated 
documentation is likely to provide a higher degree of accuracy and completeness 
than manual documentation. In general, participants in model risk management 
should not rely upon manually generated documentation for ML models.  

Are there other best practices for ML model risk management?  

● Yes. The Guidance makes clear that the quality of a bank’s model development, 
testing, and validation process turns in large part on “the extent and clarity of 
documentation.” Therefore, model documentation should be clear, 
comprehensive, and complete so that others can quickly and accurately revise or 
reproduce the model and verification steps. Documentation should explain the 
business rationale for adopting a model and enable validation of its regulatory 
compliance.  
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● Records of model development decisions and data artifacts should be kept 
together so that a model may be more easily adjusted, recalibrated, or 
redeveloped when conditions change. Such artifacts include development data, 
data transformation code, modeling notebooks, source code and development 
files, the final model code, model verification testing code, and documentation.  

● Model documentation should be clear, comprehensive, and complete so that 
others can quickly and accurately revise or reproduce the model and verification 
steps. Documentation should explain the business rationale for adopting a model 
and enable validation of its regulatory compliance.  

 


